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The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molec-
ular localization and movements between compartments. In this paper we enrich this calculus with a
static type system classifying each ambient with group types specifying the kind of compartments in
which the ambient can stay. The type system ensures that, in awell-typed process, ambients cannot
be nested in a way that violates the type hierarchy. Exploiting the information given by the group
types, we also extend the operational semantics of BioAmbients with rules signalling errors that may
derive from undesired ambients’ moves (i.e. merging incompatible tissues). Thus, the signal of errors
can help the modeller to detect and locate unwanted situations that may arise in a biological system,
and give practical hints on how to avoid the undesired behaviour.

1 Introduction

BioAmbients [23] is a variant of the Ambient Calculus [11], in which compartments are described as
a hierarchy of boundary ambients. This hierarchy can be modified by suitable operations that have
an immediate biological interpretation; for example, the interactions between compounds that reside
in the cytosol and in the nucleus of a cell could be modelled via parent–child communications. Thus,
BioAmbients is quite suitable for the representation of various aspects of molecular localization and
compartmentalization, such as the movement of molecules between compartments, the dynamic rear-
rangement that occurs between cellular compartments, and the interaction between the molecules in a
compartmentalized context.

A stochastic semantics for BioAmbients is given in [8], and an abstract machine for this semantics is
developed in [20]. In [17] BioAmbients is extended with an operator modelling chain-like biomolecular
structures and applied within a DNA transcription example.In [21] a technique for pathway analysis
is defined in terms of static control flow analysis. The authors then apply their technique to model and
investigate an endocytic pathway that facilitates the process of receptor mediated endocytosis.

In this paper we extend the BioAmbients calculus with a static type system that classifies each ambi-
ent with a group typeG specifying the kind of compartments in which the ambient canstay [10]. In other
words, a group typeG describes the properties of all the ambients and processes of that group. Group
types are defined as pairs (S,C), whereS andC are sets of group types. Intuitively, givenG =(S,C),
S denotes the set of ambient groups where ambients of typeG can stay, whileC is the set of ambient
groups that can be crossed by ambients of typeG. On the one hand, the setS can be used to list all the
elements that are allowed within a compartment (complementary, all the elements which are not allowed,
i.e. repelled). On the other hand, the setC lists all the elements that can cross an ambient, thus modelling
permeability properties of a compartment.

Starting from group types as bases, we define a type system ensuring that, in a well-typed process,
ambients cannot be nested in a way that violates the group hierarchy. Then, we extend the operational
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semantics of BioAmbients, exploiting the information given by the group types, with rules rising warn-
ings and signalling errors that may derive from undesired compartment interactions. For example, while
correctness of theenter/acceptcapabilities (that are used to move a compartment to the inside of another
compartment) can be checked statically, themergecapability (which merges two compartments into one)
and theexit/expelcapabilities (which are used to move a compartment from the inside to the outside of
another compartment) could cause the movement of an ambientof typeG within an ambient of typeG′

which does not accept it. In these cases, for example when incompatible tissues come in contact, an error
signal is raised dynamically and the execution of the systemis blocked. The modeller can exploit these
signals as helpfuldebugginginformation in order to detect and locate the unwanted situations that may
arise in a biological system. Intuitively, they give practical hints on how to avoid the undesired behaviour.

In the last few years there has been a growing interest on the use of type disciplines to enforce
biological properties. In [3] a type system has been defined to ensure the wellformedness of links between
protein sites within the Linked Calculus of Looping Sequences (see [4]). In [16] three type systems are
defined for the Biochemical Abstract Machine, BIOCHAM (see [1]). The first one is used to infer
the functions of proteins in a reaction model, the second oneto infer activation and inhibition effects
of proteins, and the last one to infer the topology of compartments. In [15] we have defined a type
system for the Calculus of Looping Sequences (see [6]) to guarantee the soundness of reduction rules
with respect to the requirement of certain elements, and therepellency of others. Finally, in [14] we
have proposed a type system for the Stochastic Calculus of Looping sequences (see [5]) that allows for
a quantitative analysis and models how the presence of catalysers (or inibitors) can modify the speed of
reactions.

1.1 Summary

The remainder of the paper is organised as follows. In Section 2 we recall the original BioAmbients’
syntax. In Section 3 we define our type system and in Section 4 we give our typed operational semantics.
In Section 5 me formulate two motivating examples, namely weuse our type system to analyse blood
transfusions (rising errors in the case incompatible bloodtypes get mixed) and spore protection against
bacteriophage viruses. Finally, in Section 6 we draw our conclusions.

2 BioAmbients: Syntax

In this section we recall the BioAmbients calculus.Ambientsrepresent bounded mobile entities that
can be nested forming hierarchies. They provide an intuitive mean to model bothmembrane-bound
compartments, where the components of a compartment are isolated from theexternal environment, and
molecular compartmentsi.e. multi molecular complexes in which molecules can be partially isolated
from the environment.Capabilitiesare used to model movements changing ambients hierarchies:they
can be employed to model membranes fusion, molecules movement, complexes formation. Finally,
communicationsmodel interactions between components within or across ambients boundaries.

The syntax is defined in Figure 1 and is the same as that of [23].The only difference is that in our
syntax ambients names are not optional. We give a name to eachambient in order to associate its type
to it. Ambient namesare ranged over bya,a1,b. . ., channel namesare ranged over byc,c1, . . ., capability
namesare ranged over byh,h1, . . .. We usen,m to range over unspecified names andP,Q, R, T to range
over processes.
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Capabilitiessyncronise using names (h) and allow an ambient (1) to enter in a sibling ambient ac-
cepting it (enter h /accept h), (2) to leave the parent ambient (exit h /expel h), (3) to merge with a
sibling forming a unique ambient (merge⊕ h /merge− h). Communicationson channels ($c!{m},$c?{m})
are prefixed bydirections($) denoting different kinds of communications: local communications (loc)
within the same ambient, sibling communications (sts) between sibling ambients, parent/child (ptc,ctp)
between nested ambients. Concerning processes syntax: inaction0 is a special case of summation (I = ∅)
and denotes the process doing nothing; restriction (ν n)P restricts the scope of the namen to P; P | Q
denotes the parallel composition ofP andQ; !P stands for process replication;a[[P]] describes a process
P confined in an ambient nameda; communication and capability choices (

∑
i∈I πi .Pi,

∑
i∈I Mi .Pi) gener-

alise communication and capability prefixes respectively (π.P, S.P ) and represent standard choices.

3 The Type System

We classify ambients names withgroup typesas in [10, 12]. Intuitively, the typeG of an ambient denotes
the set of ambients where that particular ambient can stay: it describes, in terms of other group types
(possibly includingG), the properties of all the ambients and processes of that group.

Group types consist of two components and are of the form (S,C), whereS andC are sets of group
types. The intuitive meanings of the types’ sets are the following:

• S is the set of ambient groups where the ambients of groupG can stay;

• C is the set of ambient groups thatG-ambients can cross, i.e., those that they may be driven intoor
out of, respectively, byenter andexit capabilities.

Clearly for all G C(G)⊆ S(G). If G= (S,C) is a group type, we writeS(G) andC(G) respectively to
denote the componentsS andC of G. We call GUniv the type of universal environments where each
ambient can stay in. Types syntax is given in Figure 2.

Besides group types we have:

• Capability types: (G1,G2)ℓ is the type associated to a nameh through which ambients of typesG1

andG2 can perform the movements described byℓ.

• Channel typesγ: the types of the channels arguments which can be groups (G) , capabilities (s) or
channels (γ).

Notation 1. Let M be a capability prefix and s=(G1,G2)(M1,M2) be a capability type, we say M∈ s if
either M= M1 or M = M2.

We now define well-formedness for capability types.

Definition 1 (s-Well-formedness). A capability type(G1,G2)ℓ is well formed iff none of the following
holds:

1. ℓ= enter/accept and∃Gi ∈G2, G j ∈G1 : Gi < C(G j)

2. ℓ= exit/expel and∃Gi ∈G2, G j ∈G1 : Gi < C(G j)

Intuitively, a capability type (G1,G2)ℓ describing the entrance(exit) of an ambient of typeG j ∈G1 into(out
of) an ambient of typeGi ∈G2 is not correct ifG j cannot (cross)stay inGi.
We now define the environmentΓ mapping names to types:

Γ ::= ∅ | Γ,m : t
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π ::= Actions
| $c!{m} Output
| $c?{m} Input

$ ::= Directions
| loc Intra-Ambient
| sts Inter-siblings
| ptc Parent to child
| ctp Child to parent

M ::= Capabilities Prefixes
| enter Entry
| accept Accept
| exit Exit
| expel Expel
| merge⊕ Merge with
| merge− Merge into

S ::= Mh Capabilities

P ::= Processes
| 0 Empty process
| (ν n)P Restriction
| P | Q Composition
| !P Replication
| a[[P]] Ambient
| π.P Communication prefix
| S.P Capability prefix
|
∑

i∈I πi .Pi Communication choice
|
∑

i∈I Mi .Pi Capability choice

Figure 1: BioAmbients: Syntax.
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G1 . . .Gn Group types
t ::= G | s | γ Channels arguments
s ::= (G1,G2)ℓ Capability types
ℓ ::= enter/accept | exit/expel | merge⊕/merge− Labels
γ ::= ch{t} Channels

Figure 2: Type syntax.

we assume that we can writeΓ, m: t only if mdoes not occur inΓ, i.e. m< Dom(Γ) (Dom(Γ) denotes the
domain ofΓ, i.e., the set of names occurring inΓ). An environmentΓ is well formed if for each name the
associated type is well formed.

In the following we define compatibility between a group typeand an argument type.

Definition 2 (s-G Compatibility). Given a capability type s=(G1,G2)ℓ and a group type G we define
their compatibility as follows:

s≍G iff s is well formed and at least one between G∈G1 and G∈G2 holds.

We can check the safety of BioAmbients processes using the rules in Figure 3. LetΓ be type environment
from which we derive the type of names (rule⌊Name⌋); typing rules for processes have the shape :

Γ ⊢ P : G⊲∆

whereP is a process,G is a set of group types representing the types of the ambientsin P and∆ is a set
of capability types collecting the capabilities inP.
⌊Inact⌋ derives any group typeG for the empty process (indeed the empty process can stay in every

type of ambient);⌊Par⌋ gives to parallel composition of processesP andQ the union of the sets of groups
G1 andG2 obtained by typingP andQ; rule ⌊Amb⌋ checks whether a processP can be safely nested in
an ambienta of typeG: if P is typed with a set of typesG we have to ensure that every typeGk in G
can stay in an ambient of typeG; moreover, all capability types collected in∆ while typing P must be
compatible withG; since the scope of the capabilities is the enclosing ambient, once the capabilities in
∆ have been checked to be admissible,∆ is emptied; rule⌊Cap⌋ verifies the correspondence between the
type of a name used for capability synchronization and the capability prefix used with it and then adds
the type to∆; rule ⌊Choice⌋ gives to the choice betweenP andQ the union of the sets of groupsG1 and
G2 derived by typingP andQ.

We now show an example motivating the presence of theC set of ambient groups that can be crossed.
Hydrophilic molecules are typically charge–polarized andcapable of hydrogen bonding, thus enabling it
to dissolve more quickly in water than in oil. Hydrophobic molecules instead tend to be non–polar and
thus prefer other neutral molecules and non–polar solvents. As a consequence, hydrophobic molecules
in water tend to cluster together forming micelles. Hydrophobic molecules can cross cell membranes in
a natural (and slow) way, even if there is no particular transporter on the membrane. On the contrary,
hydrophilic molecules can cross membranes only with dedicated transporters (conveyers). We can model
thesecrossingproperties with our type system. Namely, we can represent cells with or without conveyers
as ambients of typeGCConvandGC respectively; molecules can be of typeGHphi (hydrophilic) andGHpho

(hydrophobic). Finally, transporters have typeGConv. Molecules of typesGHphi andGHpho can stay in
bothGCConv andGC cells but onlyGHpho molecules can crossGC cells. The setsS andC associated to
the types are given in Figure 4.
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Γ ⊢ 0 : G⊲∅ ⌊Inact⌋ Γ,n : t ⊢ n : t ⌊Name⌋

Γ ⊢ P : G⊲∆
⌊Restr⌋

Γ ⊢ (ν c)P : G⊲∆

Γ ⊢ P : G1 ⊲∆1 Γ ⊢ Q : G2 ⊲∆2
⌊Par⌋

Γ ⊢ P | Q : G1,G2 ⊲∆1∪∆2

Γ ⊢ P : G⊲∆
⌊Repl⌋

Γ ⊢!P : G⊲∆

Γ ⊢ a : G Γ ⊢ P : G⊲∆ G ∈ S(Gk), ∀Gk ∈G s≍G ∀ s∈ ∆
⌊Amb⌋

Γ ⊢ a[[P]] : G⊲∅

Γ ⊢ c : ch{t} Γ,n : t ⊢ P : G⊲∆
⌊Input⌋

Γ ⊢ $c?{n}.P : G⊲∆

Γ ⊢ c : ch{t} Γ ⊢ P : G⊲∆ Γ ⊢m : t
⌊Out⌋

Γ ⊢ $c!{m}.P : G⊲∆

Γ ⊢ h : s M∈ s Γ ⊢ P : G⊲∆
⌊Cap⌋

Γ ⊢ Mh.P : G⊲∆∪{s}

Γ ⊢ P : G1 ⊲∆1 Γ ⊢ Q : G2 ⊲∆2
⌊Choice⌋

Γ ⊢ P+Q : G1,G2 ⊲∆1∪∆2

Figure 3: Typing rules.

Group typesG S(G) C(G)

GC GUniv GUniv

GCConv GUniv GUniv

GConv GCConv GUniv

GHphi GCConv, GC GCConv

GHpho GCConv, GC GCConv, GC

Figure 4: Types for molecules and cells.

Let

Γ = cellC : GCConv, cell : GC, conv: GConv, h′ : (GHphi,GC)exit/expel, h′′ : (GHpho,GC)enter/accept,

mol1 : GHphi, mol2 : GHpho, h1 : ({GHphi,GHpho},GConv)enter/accept, h2 : (GConv,GCConv)exit/expel,

h3 : (GConv,GCConv)enter/accept, h4 : ({GHphi,GHpho},GConv)exit/expel

A cell with conveyors can be modeled as an ambient of typeGCConvwith nested conveyors and molecules:

cellC[[! conv[[P]] | mol1[[enter h.exit h4]] |mol2[[exit h′+enter h.exit h4]] | expel h′]]

whereP = accept h.enter h1.exit h2.enter h3.expel h4. Thus we model the conveyor as first accepting
molecules throughh then exiting the current cell throughh2, entering a new cell throughh3 and finally
releasing it throughh4. Molecules of typeGHpho (mol1) can enter inside the conveyor throughh and
finally be expelled by it, after the transport, throughh4; instead molecules of typeGHpho (mol2) can also
pass the membrane cell without the use of a conveyor (throughh′).

4 Typed Operational semantics

In this section we extend the semantics of BioAmbients by adding rules which rise errors as a conse-
quence of undesired behaviour. The structural congruence of BioAmbients remains unchanged, we recall
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P | Q≡Q | P (P | Q) | R≡P | (Q | R)
P | 0≡P (ν n)0 ≡0
(ν n)(ν m)P ≡(ν m)(ν n)P (ν n)P | Q ≡P | (ν n)Q if n< fn(P)
(ν n)a[[P]] ≡a[[(ν n)P]] $c?{m}.P≡$c?{n}.P[m← n] if n< fn(P)
(ν m)P ≡(ν n)P[m← n] if n< fn(P) !0 ≡0
!P ≡P | !P

Figure 5: Structural congruence.

it in Figure 5. Rules for ambients movements and communications modelreactionswhich may happen
when two complementary prefixes on the same namen occur in parallel. Safety of communications and
enter/accept capabilities can be statically checked by typing rules:enter/accept capabilities are en-
sured to be well formed, i.e. they cannot move an ambienta[[ . . .]] of type G in an ambientb[[ . . .]] of type
G’ if G′ <S(G) (see Definiton 1). On the other hand, a static control ofexit/expel andmerge⊕/merge−
capabilities would require too many constraints in the definition of group types: we should check the
relation between the group types involved in all possibleexit/expel andmerge⊕/merge− interactions;
as a consequence the type system would be very restrictive discarding also safe reductions just because
of the presence of potentially unsafe capability prefixes ina choice. For this reason we checkexit/expel
andmerge⊕/merge− reductions at run-time, signalling errors when they arise.The reduction rules are
in Figure 6.

Rule ⌊RedIn⌋ reduces the synchronization (thorough a nameh) of enter h/accept h capability to
the entrance of an ambienta[[ . . .]] in an ambientb[[ . . .]]. As explained above, if this rule is applied to
a well typed process after the reduction the nesting of ambients is safe. Rule⌊RedOut⌋ reduces the
synchronization ofexit h/expel h prefixes to the exit of an ambientb[[ . . .]] out of an ambienta[[ . . .]]. We
put a warningW(Gb) in parallel with the new sibling ambients, since we do not know in which ambient
b[[ . . .]] will arrive once exited froma[[ . . .]]: e.g. b[[ . . .]] could be nested in an ambient where it cannot stay.
Two rules model the reduction of warned ambients inside another ambient:⌊Red AmbWarnOK⌋ reduces
the warning parallel to a safe one if the exit did not producedan unsafe nesting; on the contrary, in case
of unsafe nesting⌊Red AmbWarning⌋ generates an error; finally rule⌊Red Amb⌋models reduction inside
an ambient when there are no warnings.

Rule ⌊Merge⌋ reduces the synchronization ofmerge⊕ h/merge− h prefixes to the fusion of two
sibling ambients into a single one: themerge− prefix ”brings” all the processes in parallel with the
prefixed one into the sibling ambient. We cannot check statically which processes will be in parallel
with the prefixed one when the reduction rule is applied: we perform this check at runtime raising an
error in case of unsafe nesting due to the merging of two sibling ambients (rule⌊RedMergeWarning⌋).
Concerning communications, rules are unchanged w.r.t. [23], they model names substitutions due to
communications between processes located in same ambient (⌊Red Local⌋), in parent-child ambients
(⌊Red Parent Output⌋, ⌊Red Parent Input⌋) and in sibling ambients⌊Red Sibling⌋.

Note that in the rules of our operational semantics there areno checks on the setsC since capability
types should be well formed (thus satisfying the conditionsfor C sets).
Let Error Gi [[G j]] range overexpelError Gi[[G j ]] andmergeError Gi[[G j ]]. A well typed process either
reduces to another well typed process or generates an error.

Theorem 1. If Γ ⊢ P : G⊲∆ then

• either P−→ P′ or P−→ P′ |W(G) and∃ Γ′,G
′
,∆′ such thatΓ ⊢ P′ : G

′
⊲∆′

• or ∃Gi , G j such that P−→ Error Gi [[G j]]
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a[[(T+enter h.P) | Q]] | b[[(T′+accept h.R) | S]] −→ b[[a[[P | Q]] | R | S]] ⌊Red In⌋

Γ ⊢ b : Gb

a[[b[[(T+exit h.P) | Q]] | (T′+expel h.R) | S]] −→ b[[P | Q]] | a[[R | S]] |W(Gb)
⌊Red Out⌋

P−→ R |W(Gi) Γ ⊢ a : Ga Ga ∈ S(Gi )

a[[P]] −→ a[[R]]
⌊Red AmbWarnOK⌋

P−→ R |W(Gi) Γ ⊢ a : Ga Ga < S(Gi )

a[[P]] −→ expelError Ga[[Gi]]
⌊Red AmbWarning⌋

P−→ Q

a[[P]] −→ a[[Q]]
⌊Red Amb ⌋

Γ ⊢ a : Ga Γ ⊢ R : GR Γ ⊢ S : GS ∀Gi ∈ (GR,GS), Ga ∈ S(Gi )

a[[(T+merge⊕ h.P) | Q]] | b[[(T′+merge− h.R) | S]] −→ a[[P | Q | R | S]]
⌊Red Merge⌋

Γ ⊢ a : Ga Γ ⊢ R : GR Γ ⊢ S : GS ∃Gi ∈ (GR,GS), Ga < S(Gi )

a[[(T+merge⊕ h.P) | Q]] | b[[(T′+merge− h.R) | S]] −→mergeError Ga[[Gi]]
⌊Red Merge Error⌋

(T + loc c?{m}.P) | (T′+ loc c!{n}.Q) −→ P[m← n] | Q ⌊Red Local⌋

(T +ptc c!{n}.P) | a[[(T′+ ctp c?{m}.Q)]] | R−→ P | a[[Q[m← n] | R]] ⌊Red Parent Output⌋

a[[(T+ ctp c!{n}.P) | R]] | (T′+ptc c?{n}.Q) −→ a[[R | P]] | Q[m← n] ⌊Red Parent Input⌋

a[[(T+ sts c!{n}.P) | R]] | b[[(T′+ sts c?{m}.Q) | S]] −→ a[[R | P]] | b[[Q[m← n] | S]] ⌊Red Sibling⌋

P−→ Q
⌊Red Res⌋

(ν n)P−→ (ν n)Q

P−→ Q
⌊Red Par⌋

P | R−→ Q | R

P≡ P′,P−→ Q,Q≡ Q′
⌊Red ≡⌋

P′ −→ Q′

Figure 6: Operational Semantics

Proof. By induction on the definition of→.

Note that our semantics does not reduce the warningsW(G) at top level. While they do not affect
the system evolution, they could be useful in a compositional setting. In particular, if the entire process
should be nested, at some point, into another ambient, the warnings keep the conditions on the admissible
ambients (without the need to recompute the whole type of thesystem).

5 Motivating Examples

In this section we provide a couple of simple but motivating examples. In the following we will usea
instead ofa[[0]] and we assumeS(G)=C(G) wheneverC is not explicitly represented.
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Group types S(G)
of basic elements

S(Ga) GA−, GAB−, GA+, GAB+

S(Gb) GB−, GAB−, GB+, GAB+

S(Gr) GA+,GB+, GAB+, GO+

S(Ga) GB+, GB−, GO+ ,GO−

S(Gb) GA+, GA−, GO+, GO−

S(Gr) GA−,GB−, GAB−, GO−

Figure 7: Types for blood groups.

5.1 Blood transfusion

This example has been inspired by [7]. A blood type is a classification of blood based on the presence
or absence of inherited antigenic substances on the surfaceof red blood cells: these antigens are the A
antigen and the B antigen. Blood type A contains only A antigens, blood type B contains only B antigens,
blood type AB contains both and the blood type O contains noneof them.

The immune system will produce antibodies that can specifically bind to a blood group antigen that
is not recognized as self: individuals of blood type A have Anti-B antibodies, individuals of blood type
B have Anti-A antibodies, individuals of blood type O have both Anti-A and Anti-B antibodies, and
individuals of blood type AB have none of them. These antibodies can bind to the antigens on the
surface of the transfused red blood cells, often leading to the destruction of the cell: for this reason, it is
vital that compatible blood is selected for transfusions.

Another antigen that refines the classification of blood types is the RhD antigen: if this antigen is
present, the blood type is called positive, else it is callednegative. Unlike the ABO blood classification,
the RhD antigen is immunogenic, meaning that a person who is RhD negative is very likely to produce
Anti-RhD antibodies when exposed to the RhD antigen, but it is also common for RhD-negative indi-
viduals not to have Anti-RhD antibodies. We model blood transfusion as a system consisting of a set of
closed tissues. Tissues contain blood cells and antibodiesaccording to the classification described above,
then they can join each other performing a transfusion of different blood types. We model a red blood
cell as an ambient whose type represents the blood type; thus, the groups representing blood types are:
GA+, GA−, GB+, GB−, GAB+, GAB−, GO+, GO−. We represent A,B, RhD antigen and Anti-A, Anti-B and
Anti-RhD antibodies as ambients of typeGa, Gb, Gr , Ga, Gb, Gr respectively. The setsS(G) associated
to the different blood types are given in Figure 7. Finally, we model a tissue (which contains the red
cells) as an ambient of typeGi ∈ {GA+,GA−,GB+,GB−,GAB+,GAB−,GO+,GO−}.

We model blood transfusion as the reduction between two tissues having complementary merge
capabilities (merge− for the donor,merge⊕ for the receiver). For instance let us consider a tissue
t1 represented by an ambient of typeGA+ and two potential donorst2 and t3 of typesGB+ andGO+

respectively:

P= t1[[!( merge⊕h1+merge⊕h2+ . . .merge⊕hn) | a1 | b1 | r1]] | t2[[merge− h1 | b1 | r2]] | t3[[merge− h2 | r3]]

P is well typed with

Γ = t1 : GA+, t2 : GB+, t3 : GO+, a1 : Ga, b1 : Gb, r1 : Gr , r2 : Gr , r3 : Gr , b1 : Gb,

h1 : (GA+,GB+)merge⊕/merge−,h2 : (GA+,GO+)merge⊕/merge−, . . .
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(a) (b)

(c) (d)

(e)

Figure 8: A bacterium (a) could be represented as a membrane containing the bacterium’s DNA. A
resistent (coated) spore (b) is represented as a bacterium surrounded by its coat. A bacteriophage (c)
is depicted with the outer capsid, containing the genetic material, and the hypodermic syringe, used to
inject its genetic material into the bacteria cells (d). They cannot inject coated cells (e).

Thus, the tissuet1 can potentially receive blood from many donors (merge⊕h1+merge⊕h2+ . . .merge⊕hn),
and, because for example of some human error, may also receive blood which is not compatible to its
own. Let us consider two possible reductions. The first one:

t1[[!( merge⊕h1+merge⊕h2+ . . .merge⊕hn) | a1 | b1 | r1]] | t2[[merge− h1 | b1 | r2]] −→mergeError GA+[[Gb]]

results in an error because of a wrong transfusion causing the presence of an antigen of typeGb in a
tissue of typeGA+. The second one:

t1[[!( merge⊕h1+merge⊕h2+ . . .merge⊕hn) | a1 | b1 | r1]] | t3[[merge− h2 | r3]] →
t1[[!( merge⊕h1+merge⊕h2+ . . .merge⊕hn) | a1 | b1 | r1 | r3]]

models a transfusion between compatible blood types, namely A+ andO+.

5.2 Bacteriophage viruses

In this section we use our system to model the interaction between bacteria and bacteriophage viruses
(see Figure 8).

We assume that a bacterium consists of a cellular membrane containing its DNA. The sporulation
mechanism allows producing inactive and very resistant bacteria forms, called spores which are sur-
rounded by a membrane (coat) protecting them from virus attacks. A spore can germinate and then pro-
duce a new bacterium. A bacterium can safely stay in ambientscontaining viruses if it is protected by its
coat. The types involved in this model are:GEnvOk, GEnvVirusare the types of environments respectively
virus-free and virus-friendly;GBact,GCoat are the types of the bacteria and the protecting membrane.GVir

is the type of viruses. The corresponding (relevant)S groups are shown in Figure 9.
Now let us consider a bacteriab2 surrounded by a coatb1 (we omit the description of the DNA inside
the bacterium):

P= b1[[b2[[exit h | enter h2]] | !(expel h+enter h1+enter h2)]]

P is well typed with:

Γ = h : (GBact,GCoat)exit/expel, h1 : (GCoat,GEnvOK)enter/accept, h2 : (GCoat,GEnVirus)enter/accept,

b1 : GCoat, b2 : GBact, a1 : GEnvVirusa2 : GEnvOk
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Group types S(G)
of basic elements

GBact GEnvOk

GCoat GEnvOk, GEnvVirus

GVir GEnvVirus

Figure 9: Bacteria-Viruses Example: Types

We represent the chance of the bacterium to get rid of the coatas an exit/expel capability through the
nameh which allows the bacterium to germinate (exiting from its protecting membrane). The coat
(containing the bacterium) can move in every environment, while the bacterium can only enterGEnvOk

environments; this is modeled by the use of suitableenter/accept capabilities. We now put the two
environmentsa1 (allowing viruses) anda2 (virus-free) in parallel with the bacteriumb1. There are three
possible behaviour (in the following we put labels on transitions for the sake of readability):

1. The bacterium gets rid of the coat and then can enter only ina2:
b1[[b2[[exit h | enter h2]] | !(expel h+enter h1+enter h1)]] | a1[[! accept h1]] | a2[[! accept h2]]

exit/expel(h)
→

b1[[!( expel h+enter h1+enter h1)]] | b2[[enter h2]] |W(a1[[! accept h1]]) | a2[[! accept h2]]
enter/accept(h2)

→

b1[[!( expel h+enter h1+enter h1)]] | a1[[! accept h1]] | a2[[b2[[]] | !accept h2]]

2. The coat can move in the ambienta1 and then expel the bacterium in this hostile environment (thus
generating an error):

b1[[b2[[exit h | enter h2]] | !(expel h+enter h1+enter h1)]] | a1[[! accept h1]] | a2[[! accept h2]]
enter/accept(h1)

→

a1[[b1[[b2[[exit h | enter h2]] | !(expel h+enter h1+enter h2)]] | !accept h1]] | a2[[! accept h2]]
exit/expel(h)
→

a1[[b1[[!( expel h+enter h1+enter h2)]] |W(b2[[exit h | enter h2]]) | !accept h1]] | a2[[! accept h2]]
→

expelError GEnvVirus[[GBact]]

3. The coat can move in the ambienta2 and then expel the bacterium:
b1[[b2[[exit h | enter h2]] | !(expel h+enter h1+enter h1)]] | a1[[! accept h1]] | a2[[! accept h2]]

enter/accept(h2)
→

a2[[b1[[b2[[exit h | enter h2]] | !(expel h+enter h1+enter h2)]] | !accept h2]] | a1[[! accept h1]]
exit/expel(h)
→

a2[[b1[[!( expel h+enter h1+enter h2)]] |W(b2[[exit h | enter h2]]) | !accept h2]] | a1[[! accept h1]]
→

b1[[!( expel h+enter h1+enter h1)]] | a1[[! accept h1]] | a2[[b2[[enter h2]] | !accept h2]]

6 Conclusions

The most common approach of biologists to describe biological systems is based on the use of determin-
istic mathematical means (like, e.g., ODE), and makes it possible to abstractly reason on the behaviour of
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biological systems and to perform a quantitativein silico investigation. This kind of modelling, however,
becomes more and more difficult, both in the specification phase and in the analysis processes, when the
complexity of the biological systems taken into consideration increases. This has probably been one of
the main motivations for the application of Computer Science formalisms to the description of biological
systems [24]. Other motivations can also be found in the factthat the use of formal methods from Com-
puter Science permits the application of analysis techniques that are practically unknown to biologists,
such as, for example, static analysis and model checking.

Different formalisms have either been applied to (or have been inspired from) biological systems.
The most notable are automata-based models [2, 18], rewritesystems [13, 19], and process calculi [24,
25, 23, 9, 22]. Automata-based models have the advantage of allowing the direct use of many verification
tools, such as, for example, model checkers. On the other side, models based on rewrite systems describe
biological systems with a notation that can be easily understood by biologists. However, automata-like
models and rewrite systems are not compositional. The possibility to study in a componentwise way the
behaviour of a system is, in general, naturally ensured by process calculi, included those commonly used
to describe biological systems.

In this paper we have laid the foundations for a type system for the BioAmbients calculus suitable
to guarantee compatible compartments nesting (due to some intrinsical biological properties). In this
framework, the correctness of theenter/acceptcapabilities can be checked statically, while themerge
capability and theexit/expelcapabilities could cause the movement of an ambient of typeG within an
ambient of typeG′ and dynamically rise an error. We used our type discipline tomodel how incompatible
blood transfusion could cause the system to rise an error, orto represent the movement of bacteria spore
into friendly environments where they can germinate and restart their activity.

AcknowledgmentsWe would like to warmly thank Mariangiola Dezani-Ciancaglini who encouraged us
to write this paper and gave us crucial suggestions.
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