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Abstract. The beginning of post-genomic era is characterized by a ris-
ing numbers of public collected genomes. The evolutionary relationship
among these genomes may be caught by means of the comparative anal-
ysis of sequences, in order to identify both homologous and non-coding
functional elements. In this paper we report on the on-going BIOBITS
project. It is focused on studies concerning the bacterial endosymbionts,
since they offer an excellent model to investigate important biological
events, such as organelle evolution, genome reduction, and transfer of
genetic information among host lineages. The BIOBITS goal is two-side:
on the one hand, it pursues a logical data representation of genomic and
proteomic components. On the other hand, it aims at the development
of software modules allowing the user to retrieve and analyze data in a
flexible way.

1 Introduction

Genomics and post-genomics studies which have bloomed in the last decade are
offering new tools for applied biotechnological research in several fields from med-
ical, pharmaceutical to industrial and environmental. Sequencing of the human
genome has generated a great deal of interest in the diagnosis and treatment
of diseases using genomic medicines. Structural genomics approaches covering
topologically similar proteins or gene families are great assets for progress in
the development of novel therapeutics. In addition the genomic analysis of mi-
crobial communities in a culture-independent manner (metagenomics) has also
given the opportunity to probe and exploit the enormous resource represented
by still underscribed microbial diversity.
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This paper is an extension of a work already published [12]. It describes the
on-going project BIOBITH! that aims at performing an extensive comparative
genomic studies in order to answer fundamental questions concerning the biology,
ecology and evolutionary history. The specific goal of BIOBITS is to get insights
on the tri-partite system, constituted by (i) a bacterial endosymbiont of an
arbuscular mycorrhizal (AM) fungus, (ii) AM fungi living in plant roots, and
(iii) plant roots.

Bacterial endosymbionts are widespread in the animal kingdom, where they
offer excellent models for investigating important biological events such as or-
ganelle evolution, genome reduction, and transfer of genetic information among
host lineages [30]. By contrast, examples of endobacteria living in fungi are lim-
ited [26] and those best investigated live in the cytoplasm of AM fungi [9]. AM
fungi are themselves obligate symbionts since, to complete their life cycle, they
must enter in association with the root of land plants.

AM species belonging to the Gigasporaceae family harbour an homogeneus
population of endobacteria which have been recently grouped into a new taxon
named Candidatus Glomeribacter gigasporarum [7]. The AM fungus and its
endobacterium Ca. Glomeribacter gigasporarum are currently used as a model
system to investigate endobacteria-AM fungi interactions.

The project takes advantages by the employment of a massive large-scale
analysis and genomic comparison study of phylogenetically related free-living
bacteria. Moreover, the comparison with genomes of other endosymbionts species
will provide insights about the reason of the strict endosymbiotic life-style of this
bacterium.

Another aspect taken into account is the analysis of metabolic pathways. A
strong reason of interest in this project is based on the assumption that the
symbiotic consortia may lead to the discovery of molecules of interest for the
development of novel therapies and other applications in biotech.

In this paper we report specifically on a step of BIOBITS whose goal, roughly,
is the development of a modular database which allows to import, to store, and
to analyze massive genomic data. Later in BIOBITS we will extensively develop
a computational genomic comparison focused on the above bacterium and fungi
genomes. BIOBITS deploys a data warehouse that stores in a multi-dimensional
model the interesting components of the project. Such a component should have
the following characteristics: i) being able to store genomic data from multiple
organisms, possibly taken from different public database sources; ii) annotating
the genomic data making use of the alignment between the given sequences and
the genomic sequences of other similar organisms; iii) annotating the genomic
sequences and the protein transcript products by the full use of ontologies devel-
oped by the biology and bioinformatics communities; iv) comparing and visually
presenting the results of the genomic alignment; iv) being able to cluster genomic
or proteomic data coming from different organisms. The aim is at finding easily

1 BIOBITS is a project funded by Regione Piemonte under the Converging Technolo-
gies Call. BIOBITS involves Universita di Torino, Universita del Piemonte Orientale,
CNR and the companies ISAGRO Ricerca s.r.l., GEOL Sas, Etica s.r.1.
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increasing levels of similarity and induce on one side the steps of the phylogenetic
evolution and on the other side investigate on the metabolic pathways.

As a matter of fact, we wish to take advantage of the possibilities offered by
computer science technology and its methodologies to analyse the genomic data
the project will produce. The analysis of genomic data requires computational
tools that allow to “navigate” flexibly data from arbitrary (at least in principle)
user defined perspectives and under different degrees of approximation.

In this paper we describe the BIOBITS system architecture in terms of BIO-
BITS Data Mart and BIOBITS modules. With respect to the previous publica-
tion [12], we report a detailed description of two modules, namely Case Base
Reasoning and Co-clustering modules, that have been developed to perform a
comparative genomic analysis. Moreover, we show the results obtained in a case
study by the use of the system. The case study shows the utility and flexibility
of an integrated system whose modules allow to retrieve and analyze different
portions of data, at the granularity level that is needed by the user. This flexi-
bility eliminates the necessity of perform any pre-processing to the data in order
to adapt it to the analysis algorithm and to the user’s goal.

In the presented case study we extracted a set of biological sequences belong-
ing to the organism under investigation by following the BIOBITS Data Mart
star schema. BIOBITS project focus on the identification of the evolutionary re-
lationships among species more similar to Ca. G. gigasporarum. Using the Case
Base Reasoning module, we retrieved sequences that are similar to the given
organism. Retrieval is performed according to the suitable abstraction level over
the data given by a taxonomy of granularities. Finally, to the resulting sequences
we applied the Co-clustering module and we were able to identify protein do-
mains common among the sequences.

2 Related Works

There is a wide variety of approaches in designing tools to analyze biological
data. Experience suggests that the best way to data analysis is to set up a
database. An "historical’ example is ACeDB (A C. elegans Database [1]), one of
the first hierarchical, rather than relational, model organism databases. Another
example is ArkDB [21], a schema that was created to serve the needs for the
subset of the model organism community interested in agriculturally important
animals. ArkDB has been successfully used across different species by different
communities, but is rarely used outside the agricultural community.

On “top” of databases a great variety of applications is available, from those
ones for the annotation community to molecular pathway visualization, or from
the work-flow management to the comparative genome visualization.

Currently, there is a rich community and many available software tools built
around MAGE [27] and GMOD [33]. GMOD stands for Generic Model Organism
Database project, which brought to the development of a whole collection of
software tools for creating and managing genome-scale biological databases, in
the forthcoming description. In the BIOBITS project GMOD and its database
Chado have been selected as the data elaboration and management center.
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2.1 GMOD and Chado Database

The BIOBITS software architecture is built upon a layer provided by GMOD
system. We report here the main motivations that lead to this choice.

The design and implementation of database applications is time consuming
and labor-intensive. When database applications are constructed to work with
a particular schema, changes to the database schema require in turn changes to
the software. Unfortunately, these changes are frequent in real projects due to
changes in requirements. In particular they are frequent in bioinformatics. Most
critical are the changes in the nature of the underlying data, which follow the
current understanding of the natural world. Additional requirements are placed
by the rapid technological changes in experimental methods and materials. Fi-
nally, the wide variety of biological properties in the organisms species always
has made difficult to create a unique model schema valid for all the species.

All the above outlined motivations led to the design of Chado database model
which is a generic and extensible model, whose software is available under an
open source delivery policy. Chado schema can be employed as the core schema
of any model organism data repository. This common schema increases interop-
erability between software modules that operate on it.

Chado data population is driven by ontologies, i. e. controlled vocabularies.
Ontologies give a typing to the entities with the result of partitioning the whole
schema into subschemas, called modules. Each module encapsulates a different
biological domain and uses an appropriate ontology. An ontology characterizes
the different types of entities that exist in a world under consideration by means
of primitive relations. These primitives are easy to understand and to use, they
are expressive and consistent, and they allow the reasoning about the concepts
under representation. Typical examples of ontological relations are: (i) ¢s a which
expresses when a class of entities is a subclass of another class, and (ii) part of
which expresses when a component constitutes a composite. Many other relation
types are discussed in [15].

Concerning the schema of Chado it is worth remarking feature and sequence
entities. feature allows both data and meta data; it can be populated by instances
each determining the type of every other instance in the schema, in accordance
with the ontology SO [15]. sequence contains biological sequence features, that
include genetically encoded entities like genes, their products, exons, regulatory
regions, etc. .. feature and sequence are further described by properties.

3 BIOBITS System Architecture

Here we deepen the description of the system which is designed to manage all
the information and all the in-silico activities in the context of the project BIO-
BITS. This system is implemented through a modular architecture, described in
detail in Section The system architecture permits (1) to store and access
locally all the information regarding the organisms to be studied, and (2) to
provide algorithms and user interfaces to support the researchers’ activities like:
(i) searching and retrieving genomes, (ii) comparing and aligning with a genome
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of reference, (iii) investigating syntenies, and (iv) locally storing potentially new
annotations.

The system architecture has been engineered exploiting the standard modules
and interfaces offered by the GMOD project [33], and completed with custom
modules to provide new functionalities. The main module of the system contains
the database which provides all the data needed to perform the in-silico activities
related to the project.

Thanks to the adoption of Chado database schema, on the one hand, we take
advantage of its support in controlled vocabularies and ontologies. On the other
hand, Chado is the standard database for most of the GMOD modules; therefore
we can reuse these modules to support the main activities of the project and ex-
tend the system incrementally as the researchers’ needs evolve. An example, is the
possibility to use BioMart Chado’s module which helps the user to identify the rel-
evant dimensions of the problem, their hierarchies and to transform and import
input data in the data warehouse conforming them in a typical star schema.

3.1 Star Schema in BIOBITS Data Mart

Essential in the data warehouse is the logical star schema of the stored data.
The star schema defines the dimensions of the problem. Often, each dimension
of the star schema can be viewed at different abstraction levels. The levels are
organized in a hierarchy. Finally, the central entity in the star schema collects
the main facts or events of interest. In the case of the BIOBITS project, there
are two star schemas.

1. The star built around the genome composition facts. It represents the compo-
sition of each genome in terms of genes and chromosomes and with reference
to the belonging organism.

2. The star schema around protein facts. It describes the proteins in terms
of PROSITE domains and with respect to the dimensions of phylogenetic
classification and metabolic pathways.

The genes and proteins facts are linked by the relationship representing the
encoding.

For most of the dimensions, such as genes and phylogenetic classification, the
scientific literature already has provided ontologies (e.g., Gene Ontology, GO)
and controlled vocabularies (Clusters of Orthologous Groups, COG) that are
available in public domain databases and are imported in the system. Another
example of available hierarchy on the genes and proteins are the family organi-
zations.

In the following we describe the BIOBITS Data Mart schema (shown in
Figure[l)) in detail.

Genome Composition. It includes all the relevant information about a genome
fragment. Considering a fragment view of the genome, genome composition
includes all the known fragments composing a genome: it reports the pre-
cise boundaries of the fragments (which depend on the user experience and
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Fig. 1. Star schema of BIOBITS Data Mart

discoveries), the start position and the fragment order with respect to the
genome, its nucleotide sequence and strand.

Chromosome/Plasmid DNA. It specifies the localization of the fragment ex-
pressed by the number or the name of the corresponding chromosome/plasmid
location. Indeed, the genome could be inserted either in a chromosome se-
quence or in a plasmid sequence.

Organism. It specifies both endosymbiotic and ectosymbiotic bacteria. An or-
ganism is identified by the specified identifier, includes the organism scientific
name and its classifications in the taxonomy database.

Gene Annotation. It consists in a short report of gene-specific information
(identifier and name), comprehensive of a brief description of gene prod-
ucts using both the information reported in Gene Ontology, and the main
references stored in Pubmed.

Gene Synonymous. It contains all the synonymous names associated to each
gene. Genes and proteins are often associated to multiple names; additional
names are included as new functional or structural information are discov-
ered. Since authors often alternate between synonyms, computational anal-
ysis benefits from collecting synonymous names.

Gene Family. Following the gene classification into families, consistent to the
genes biochemical similarity, it reports the family identifiers.
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Product. Itis a class of the products that genes codify. Products are categorized
into in three classes: transfer RNA (tRNA), ribosomal RNA (rRNA) and
proteins. Moreover, it reports a pseudogene indication if the gene has lost
its coding ability.

tRNA. Transfer RNA is a small RNA molecule that transfers a specific active
amino acid to a growing polypeptide chain.

rRINA. Ribosomal RNA is the central component of the ribosome. The ribo-
some is a complex of ribosomal RNA and ribonucleoproteins.

Metabolic Pathways. It represents pathways which are composed by a set
of biochemical reactions. Each pathway represents the knowledge on the
molecular interactions and reactions network.

Protein. It refers to protein-specific information (protein identifier and name).
A protein is a set of organic compounds (polypeptides) obtained by tran-
scription and translation of a DNA sequence.

Phylogenetic Classification. It consists of Cluster of Ortologous Groups
(COG) of protein sequences encoded in a complete genome.

Domain Name. It reports the domains extracted from PROSITE database [22],
characterizing the protein sequence. PROSITE consists of documentation
entries describing protein domains, families and functional sites.

The relationship among proteins and domains is characterized by the at-
tribute order describing how the domains that compose a specific protein
are sorted.

3.2 System Architecture

Figure [2] summarizes the main architecture of the BIOBITS system. In the fol-
lowing we focus on objectives and features of the BIOBITS system.

Local and global access to data. The instance of Chado we want to set up will
contain both data on genome we shall explicitly produce as part of the project
BIOBITS and data retrieved from the biological databases accessible through the
Internet. The Import modules in Figure [2 will accomplish such a requirements.
Concerning the retrieval from Internet, RRE - Queries is a GUI wizard, built
on the basis of a previously published tool [24], able to query different biological
databases like for example GenBank [19] and able to convert the results of the
queries into standard formats. Alternatively, we can convert the format of data
retrieved from Internet thanks to the scripts available as part of the GMOD
project. A remarkable example are those scripts that convert GenBank genes
annotations into the Generic Feature Format (GFF), adopted as a standard in
the GMOD project. Of course, once data have been retrieved, Import Modules
update Chado, either on-demand, or automatically, possibly on a regular basis.

An On Line Architecture Mining architecture. One of the advantages of a data
warehouse is the ready availability of clean, integrated and consolidated data
represented by a multiplicity of dimensions. Once that data are stored in the
data warehouse, elementary statistics can be computed on the available facts
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Fig. 2. The architecture of BIOBITS system

and aggregation of measures and frequencies of facts can be immediately com-
puted. The results can be browsed and compared by OLAP primitives and tools.
Finally, on these statistics the power of data mining algorithms can be further
exploited. This is the On Line Architecture Mining (OLAM) view of a software
architecture [20]. OLAM is composed by a suite of data mining algorithms that
receive from the client a query for a knowledge discovery task. The request can
be answered by the predictive and semi-automatic capabilities of data mining
algorithms. In turn, these ones work on the results of an underlying OLAP server
that receives the input data from the underlying data warehouse.

For the transformation of the data stored in Chado into the star schema of

Figure [1] we exploit BioMart [8], which is a software package available inside
GMOD.

Services on Chado and the Star Schema. In Figure 2 associated to both
the Chado instance and to the BIOBITS Data Mart we plan to offer two types
of services. The first type is implemented on the basis of existing modules of
GMOD. Figure [ highlights them in the uppermost dashed box, named GMOD
GUI Modules. The second type of services are internal to the real BIOBITS sys-
tem: they are shown in Figure 2] inside the central dashed box, named BIOBITS
system. Now, we discuss the latter components in detail, putting much emphasis
on the features of the software modules that we specifically develop in support
to the realization of the goals of the project.

GMOD Graphical User Interface Modules. These modules exploit the available
GMOD modules using Chado database to provide the researchers with the tools
for comparative genomics needed by the BIOBITS project. GUI modules have
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also a graphical user interface and allow the user to interact with the system. In
particular,

— CMap allows users to explore comparisons of genetic and physical maps. The
package also includes tools for maintaining map data;

— GBrowse is a genome viewer, and also permits the manipulation and the
display of annotations on genomes;

— GBrowse syn is a GBrowse-based synteny browser designed to display mul-
tiple genomes, with a central reference species compared to two or more
additional species;

— Sybil is a system for comparative genomics visualizations;

— MartExplorer and MartView are two user interfaces allowing the user to ex-
plore and visualize the stored experimental results and the database content.

BIOBITS system specific modules. The goal of these modules is to allow data
analysis under two perspectives that should complement each other and serve
for validation.

The first perspective is the one offered by the Case Base Reasoning module.
It supports efficient retrieval strategies in the context of the search for genomic
similarity and syntenies, directly operating on our implementation of the star
schema inside BioMart.

The other perspective will exploit tools from Data Mining. We shall use them
to perform advanced elaboration on the genomic data. Among the data mining
modules we foresee modules for classification, for feature selection and clustering.
The latter will be discussed in more detail in this paper, since it has been the
first to be integrated into the BIOBITS system. Indeed, one of the main goal
of the whole BIOBITS project is to provide the results of fragment alignment
tools. Since clustering provides a specifically useful service for the exploration
and elaboration of the similarities among genes and proteins, its results could
provide to the syntheny tools additional information that would enhance the
fragment elaboration.

As a concluding remark, the plan is to develop BIOBITS system specific mod-
ules as web-based GUI in order to gain user-friendliness and a good degree of
interoperability, similar to current GMOD modules that are able to connect to
other modules by standard interfaces.

Of course we shall adhere to the open source philosophy. So, any BIOBITS
system specific module will be available as part of the whole project GMOD.

4 Software Modules to Support Researchers’ Activities

The main contribution of the BIOBITS project is the development of two GMOD
modules to analyse the knowledge stored in the data warehouse. The following
section describes the details of these new modules based on Case Based Reason-
ing and clustering.
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4.1 Case-Based Reasoning

Within the BIOBITS architecture, we worked at the design and implementation of
an intelligent retrieval module, which implements the retrieval step of the Case-
Based Reasoning (CBR) [2] cycle. CBR is a reasoning paradigm that exploits the
knowledge collected on previously experienced situations, known as cases. The
CBR cycle operates by (1) retrieving past cases that are similar to the current
one and by (2) reusing past successful solutions; (3) if necessary, past solutions
are properly adapted to the new context in which they have to be used; finally
(4) the current case can be retained and put into the system knowledge base,
called the case base. It is worth noting that purely retrieval systems, leaving to
the user the completion of the reasoning cycle (steps 2 to 4), are very valuable
decision support tools [38], especially when automated adaptation strategies can
hardly be identified, as in biology and medicine [28]. This is exactly the strategy
we are following in the current approach.

Our retrieval module is meant to support comparative genomics studies that
represent a key instrument to: (1) discover or validate phylogenetic relationships,
(2) give insights on genome evolution, and (3) infer metabolic functions of a
particular organism. In the module, cases are genomes, each one taken from
a different organism, and properly aligned with the same reference organism.
Indeed, the alignment task is a prerequisite in our library. For this reason we
start describing the selected sequences alignment strategy, then we detail our
module deep down into the cases representation and retrieval.

Sequence Alignment. To deal with the alignment task we rely on BLAST [3].
BLAST is a state-of-the-art local alignment algorithm, specifically designed for
bioinformatics applications. It takes as an input a sequence of nucleotides and
properly aligns it to a database of strings belonging to (different) organisms of
interest.

From a typical BLAST output (Figure B one can extract basic information
(percentage of the sequence that shows identity and length of the sequence align-
ment) that can be easily plotted as represented in Figure [l

Case Representation. From an application viewpoint, it makes sense to con-
vert the quantitative similarity values in Figure [ to a set of qualitative levels
(e.g. low, medium, high similarity). This provides a “higher level” view of the
information, able to abstract from unnecessary details. To perform the conver-
sion, we exploit a semantic-based abstraction process, similar to the Temporal
Abstractions (TA) techniques, described in [40J5]. Indeed, in our domain, we
consider as the independent variable the symbol position in the aligned strings,
instead of the time. As in TA we move from a point-based to an interval-based
representation of data, where the input points are the symbol positions, and
the output intervals (episodes) aggregate adjacent points sharing a common be-
havior, persistent over the sequence. In particular, we rely on state abstractions
[5], to extract episodes associated with qualitative levels of similarity between
the two aligned strings, where the mapping between qualitative abstractions
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Sbjct 1607368 GGCAGCGGCTCGCCCTCGATCTGGCTGGCCAGCAGTTCCGCGCCCAGCGCTGCCCAGGTG 1607309

Fig. 3. BLAST sequence alignment

and quantitative values of the similarity has to be parametrized on the basis
of domain semantic knowledge. Semantic knowledge can also support a further
refinement of the state abstraction symbols, according to a taxonomy like the
one described in Figure [Bl Obviously, the taxonomy can be properly modified
depending on specific domain needs.

Moreover, our tool allows the representation of the available sequences at any
level of detail, according to a taxonomy of granularities, like the one depicted in
Figure [6 This granularity change makes sense from a biological point of view:
consider e.g. that a region may be conserved among relative organisms, while a
specific gene within the region may not. Thus, a high similarity at the region
level might be difficultly identified at the level of single genes (as it will be shown
in the example discussed in Subsection B).

Notice that the taxonomy of the granularities definition is strongly influenced
by domain semantics. For instance, the number of nucleotides which composes a
gene depends on the specific organism, and on the specific gene. Domain knowl-
edge also strongly influences the conversion of a string of symbols from a given
granularity to a different one, as required for flexible retrieval.

To summarize, case representation is obtained as follows. First, an optimal
alignment of two nucleotide strings is calculated by BLAST. In particular, for
each subsequence of nucleotides, a percentage of similarity with the aligned nu-
cleotide in the paired string is provided. Abstractions on such quantitative levels
are then calculated, and allow to convert these values into qualitative ones, ex-
pressed as strings of symbols. Abstractions are calculated at the ground level in
the symbol taxonomy (and operate also at the ground level in the granularity
taxonomy, since they work on nucleotides, see Figure[d]). The resulting string of
symbols is then stored in the case library as a case. Despite the fact that cases
are stored as abstractions at the ground level, they could be easily converted at
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Case Retrieval (query answering). Taking advantage from the multi-level
abstraction representation introduced above, we support flexible retrieval.

In particular, we allow users to express their queries for case retrieval at any
level of detail, both in the dimension of data descriptions (i.e. at any level in the
taxonomy of symbols) and in the dimension of the granularity.

Obviously, since cases are stored at the ground level in both dimensions, in
order to identify the cases that match a specific query, the analyst must provide
a function for scaling up (up henceforth) two or more symbols expressed at a
specific granularity level to a single symbol expressed at a coarser one. Moreover,
a proper distance function must be defined.

The data structures described above, as well as the up and the distance func-
tions, have to be detailed on the basis of the semantics of the specific application
domain. However, we have identified a set of general “consistency” constraints,
that any meaningful choice must satisfy, in order to avoid ambiguous or mean-
ingless situations. For instance, we enforce the fact that distance monotonically
increases with ordering in the symbol domain.

Moreover, distance “preserves” ordering also in the case in which is a rela-
tionships between symbols are involved. For example, the distance between L
(low) and M (medium) is smaller than the distance between L (low) and H,
(very high). The exhaustive presentation of such constraints is outside the scope
of this paper, but can be found in [29].

In order to increase efficiency, our framework also takes advantage of multi-
dimensional orthogonal index structures, which allow for early pruning and fo-
cusing in query answering. Indexes are built on the basis of the data structures
previously described. The root node of each index is a string of symbols, de-
fined at the highest level in the symbol taxonomy, i.e. the children of “Any”,
as shown in Figure (] and in the granularity taxonomy. A —possibly incomplete,
index stems from each root, describing refinements along the granularity and/or
the symbol dimension. An example multi-dimensional index, rooted in the H
symbol, is represented in Figure[7l Note that, in the figure, granularity has been
chosen as the leading dimension, i.e. the root symbol is first specialized in the
granularity dimension. From each node of the resulting index, the sequence of
the symbols of the node itself is then orthogonally specialized in the secondary
(i.e. the symbol) dimension, while keeping granularity fixed. However, the op-
posite choice for instantiating the leading and the secondary dimensions would
also be possible.

Each node in each index structure is itself an index, and can be defined as
a generalized case, in the sense that it summarizes (i.e. it indexes) a set of
cases. This means that the same case is typically indexed by different nodes in
one index (and in the other available indexes). This supports flexible querying,
since, depending on the level at which the query is issued, according to the two
taxonomies, one of the nodes can be more suited to provide a quick answer.

To answer a query, to enter the more proper index structure, we first pro-
gressively generalize the query itself in the secondary dimension (i.e. the symbol
taxonomy in the example), while keeping the leading dimension (i.e. granularity
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granules =
state taxonomy

region

nucleotide

Fig. 7. An example of a multi-dimensional orthogonal index

in the example) fixed. Then, we generalize the query in the other dimension as
well. Following the generalization steps backwards, we can enter the index from
its root, and descend along it, until we reach the node which fits the leading di-
mension level of the original query. If an orthogonal index stems from this node,
we can descend along it, always following the query generalization steps back-
wards. We stop when we reach the same detail level in the secondary dimension
as in the original query. If the query detail level is not represented in the index,
because the index is not complete, we stop at the most detailed possible level.
We then return all the cases indexed by the selected node.

It is worth noting that indexes may be incomplete with respect to the tax-
onomies. Index refinement can be automatically triggered by the storage of new
cases in the case base, and by the types of queries which have been issued so far.
In particular, if queries have often involved, e.g. a symbol taxonomy level which
is not yet represented in the index(es), the corresponding level can be created.
A proper frequency threshold for counting the queries has to be set to this end.
This policy allows to augment the indexes discriminating power only when it is
needed, while keeping the memory occupancy of the index structures as limited
as possible.

As a last remark, a number of tools to support comparative genomics studies
are already available. For example, the VISTA tool (http://genome.lbl.gov/vi-
sta/index.shtml) allows the visualization of pre-computed pairwise and multiple
alignments of whole genome assemblies. Our tool, beside alignments visualiza-
tion, also allows to mine genomes at multiple levels: customized searches can be
performed, to retrieve genomes and/or genomic segments matching specific fea-
tures as described by the query at the desired granularity. Furthermore, thanks
to this tool, queries can be performed efficiently and potentially on very large
databases. The novelties introduced are exemplified in section Bl with the addi-
tion of a performance study.

4.2 Clustering Modules

In this paper we do not go in detail in describing all the predictive and ex-
ploratory capabilities offered by data mining algorithms.

The aim of this section is to depict a portrait built on a single example: clus-
tering. It offers the possibility to show the benefits in terms of interoperability,
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extendability and flexibility offered by a modular system built upon a data ware-
house in which a multi-dimensional representation of a ground set of facts is stored.
On these data, whenever it is needed, a query can be issued by the user in order
to retrieve from the data warehouse the values of the interesting subset of dimen-
sions. On this initial set of values multi-level reasoning is possible exploiting the
relationships between facts in the knowledge network.

One of the classical aims of clustering is to provide a description of the data
by means of an abstraction process. In many applications, the end-user is used to
study natural phenomena by the relative proximity relationships existing among
the analyzed objects. For instance, he/she compares organisms by means of
the relative similarity in terms of the common features with respect to a same
referential example. Many Hierarchical Clustering (HC) algorithms have the ad-
vantage that are able to produce a dendrogram which stores the history of the
merge operations (or split) between clusters. Moreover, the dendrogram pro-
duced by a hierarchical clustering algorithm constitutes a useful, immediate and
semantic-rich conceptual organization of the object space. As a result HC al-
gorithms produce a hierarchy of clusters and the relative position of clusters in
this hierarchy is meaningful because it implicitly tells the user about the rela-
tive similarity between the cluster elements. HC approaches help the experts to
explore and understand a new problem domain. As regards the exploitation of
object distances, clustering algorithms offer immediate and valuable tools to the
end-user for the biological analysis.

Co-clustering. A kind of clustering algorithm particularly useful in biologi-
cal domains is co-clustering [14] whose solution provides contemporaneously a
clustering of the objects and a clustering of the attributes. Further, often co-
clustering algorithms exploit similarity measures on the clusters in the other
dimension of the problem: that is, clusters of objects are evaluated by means
of the clusters on the features and vice versa. They simultaneously produce a
hierarchical organization in two of the problem dimensions: the objects and the
features that describe the objects themselves. In many applications both hierar-
chies are extremely useful and are searched for.

In a more formalized view, a co-clustering algorithm is an unsupervised data
mining method that computes a bi-partition of a dataset X € R™ ™. A bi-
partition of a dataset is a triple (R, C, ), where R is a partition of rows (object
instances) into |R| subsets, C' is a partition of columns (object attributes) into
|C| subsets, and 1 is a relation that associate elements of R to elements of C.

An extension of the algorithm based on co-clustering has been obtained by the
introduction of constraints. Constraints are very effective in many applications,
including gene expression analysis [34] and sequence analysis [13], since the user
can express which type of biological knowledge leads to the association among
the clusters of genes (the objects) and the clusters of biological conditions (the
attributes).

The goal of the constrained co-clustering algorithm is to find a bi-partition
such that a given objective function is optimized and a set of user-defined con-
straints are satisfied. Two kinds of constraints, i.e. must-link and cannot-link,
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should be exploited. A must-link constraint specifies that two rows (respectively,
columns) of X must belong to the same cluster. Conversely, a cannot-link con-
straint specifies that two rows (respectively, columns) of X cannot belong to the
same cluster.

In general, the satisfaction of constraints may decrease the theoretical opti-
mum of the objective function. Notice also that the satisfaction of a conjunction
of constraints is not always feasible. A constrained co-clustering algorithm works
as follows. During each iteration, it associates each row to the nearest row clus-
ter which does not violate any cannot-link constraint. If a row is involved in
a must-link constraint the algorithm associates the whole set of rows involved
in this constraint to the selected row cluster. Furthermore, it controls that any
cannot-link constraint is not violated. This process is iterated until the function
reaches a desired value, i.e. its decrease is smaller than a user defined threshold
7. The same process is simultaneously performed over the columns of the matrix.

5 Case Study

The recent efforts of several sequencing projects to explore the genomes of or-
ganisms from various lineages have provided great resources for comparative
genomics. Since the beginning of the postgenomic era, investigators faced how
to manage the rising number of public collections of genomes in novel ways [16].
Other than the public databases where sequences are deposited, more specific
data warehouses have been developed [23] were the incorporated data types in-
clude annotation of (both protein and non-protein coding) genes, cross references
to external resources, and high throughput experimental data (e. g. data from
large scale studies of gene expression and polymorphism visualised in their ge-
nomic context). Additionally, on such platforms, extensive comparative analysis
could be performed, both within defined clades and across the wider taxonomy.
Furthermore, sequence alignments and gene trees resulting from the comparative
analysis can be accessed. Computational challenges in the field of comparative
analyses have been overcome [39]. The developed tools have helped in elucidating
the genomic structures of a multiple levels of prokaryotes [6], leading to a much
improved understanding of why a bacterial genome is organized in the way it is.

A number of comparative analyses closer to our field of investigation have al-
ready shade lights on the characterization of genomes of host-associated and free-
living bacteria [IAIB2TTIT0]. Novel computational approaches on large scale
datasets provide a new viewpoint for whole genome analysis and bacterial char-
acterization. For example, the self-attraction clustering approach allowed classi-
fication of Proteobacteria, Bacilli, and other species belonging to Firmicutes [35],
whereas the research of protein [18] or genomic [37] signatures have been use-
ful to elucidate the evolutionary relationships among the Gammaproteobacteria
and to provide new insights into the evolution of symbiotic diversity, microbial
metabolism and host-microbe interactions in sponges.

One major focus of comparative sequence analysis is the search for syntenies.
The term synteny is used to mean a set of genes that share the same relative
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ordering on the genome of different species. In BIOBITS project we are inter-
ested on a synteny between several species in order to recognize which are the
species more similar to Ca. G. gigasporarum. The evolutionary relationships of
these genomes may allow the identification of homologous genes and non-coding
functional elements, such as regulatory elements and protein domains.

To reach this purpose we exploit the BIOBITS system architecture (shown
in Section [B) and the Chado modules described in this paper (see Section [).
To show the reliability of our approach we perform a sequence analysis on a
well-known bacterial genus.

5.1 Querying for Synthenies on the Region DCW

Following the Data Mart star schema reported in Figure[l the data related to a
bacterium belonging to the genus of Burkholderia (i.e. Burkholderia zenovorans)
has been extracted. In details, four tables of the Chado database (i.e. Gene
family, Gene annotation, Genome composition, and Organism) are exploited to
extract genes belonging to a specific region called Division Cell Wall (DCW).
This region is involved in the synthesis of peptidoglycan precursors and cell
division. DCW cluster is composed of 14 genes: FtsA, Ftsl, FtsL, FtsQ, FtsW,
FtsZ, mraW, mraY, mraZ, murC, murD, murE, murF, murG. The prominent feature
of the DCW cluster is that it is conserved with an high (H) similarity in many
bacterial genomes over a broad taxonomic range. Specifically, notwithstanding
some bacteria belonging Burkholderia xzenovorans simply miss one of the 14
genes, all of them maintain a high similarity at the DCW region level with their
relatives.

Suppose that a user, interested in comparing bacteria on the basis of the DCW
cluster content, asks the flexible retrieval system (see section H)) the following
query:

H,H,L,H,H,H,H,H,H,H,H,H,H,H,

looking for the specific bacteria missing the third gene, but very similar to the
reference one as regards the other genes. The flexible retrieval system will first
generalize the query in the symbol taxonomy dimension (see Figure[l), providing
the string:t HHLHHHHHHHHHHH

and then in the granularity dimension, providing the query H at the region level.
Quite naturally, we define the up function as:

up(HHLHHHHHHHHHHH) = H.

This allows to enter the index in Figure [7 from its root. Then, following the
generalization step backwards, a node identical to the query can be found, and
the ground cases indexed by it can be retrieved.

Interactive and progressive query relaxation (or refinement) are supported as
well in our framework. In this situation the distance between the original query
and the cases indexed by the other children of the node can be calculated by any
distance function which satisfies the constraints illustrated in [29], and quickly
described before. Query relaxation or refinement can be repeated several times,
until the user is satisfied with the width of the retrieval set. In the Burkholderia
example, the user may generalize the initial query as an H at the region level, and
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retrieve also the cases indexed by HHHHHHHHHHHHHH at the gene level
(the other siblings of HHLHHHHHHHHHHH do not index any real case in
this specific situation). The cases indexed by HHHHHHHHHHHHHH can
thus be listed, clarifying that their distance from the original query is greater
than zero.

Considering the performance of the Case Based Reasoning module, tests have
been conducted on databases containing different number of cases. On the left
side of Table [ we report the time elapsed to generate the multi-dimensional
indexing structure from the similarity levels generated by BLAST and properly
abstracted. The creation times span from 39 seconds to index 2000 cases, to 163
seconds to index 8000 cases. Even if the creation of the structure takes some
time, it is necessary to perform this operation only when a new database is
installed (or when a significant number of new cases is stored); then the flexible
and efficient query mechanism can start running. The right side of Table[Il shows
the time elapsed to perform a query, which spans from few milliseconds to query
on 2000 cases, to less than one second to query on 8000 cases. These experiments
were conducted on an Intel Core 2 Duo T9400 processor running at 2.53 GHz,
equipped with 4 Gb of DDR2 RAM.

Table 1. Execution times to build the multi-dimensional orthogonal index (left) and
to execute a query (right)

Multidimensional index structure Query execution times
generation from BLAST with multidimensional index
N. of cases Structure generation time (s) N. of cases Query execution times (s)
2.000 38,969 2.000 0,138
4.000 80,667 4.000 0,333
6.000 121,618 6.000 0,650
8.000 162,241 8.000 0,905

Protein Domains Mining. Beside the investigation of the biological connec-
tion at the gene level using the indexing approach, we are able to exploit the
cases deriving from the case representation to extract new analogies among nu-
cleotide sequences. In details, we query the Chado database to extract all the
protein sequences from the obtained cases. Then, we use the co-clustering mod-
ules to study the domain/motif composition of protein sequences. As it is well
known, the modular nature of proteins shows many advantages: it provides an
increased stability and new cooperative functions. The usage of protein domains
in the determination of the proteins functions has become essential. Several web
applications (e.g. Pfam [I7], SMART [25], Interpro [31]) are available to pro-
vide an overview of the domain architecture of a polypeptide sequence, and the
functions that these domains are likely to perform.

Even though the cited tools allow one to submit a set of protein sequences as
input, they perform the domain analysis considering each sequence as a single
entity. As a consequence, the user can obtain only a local view of the domain
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composition, instead of a global view, that may emphasize the domains charac-
terizing the entire proteins set.

This fact suggests the need of an automatic tool that offers the possibility
to manage the results in order to highlight the association between domains
and proteins. For this purpose the BIOBITS system includes a de novo algo-
rithm [13]. It allows the simultaneous association between protein sequences and
domains/motifs. In this way we are able to identify a richer set of motifs, each
one possibly characterizing only some of the sequences in the whole dataset. The
algorithm relies on three steps. First, we generate a prefix tree starting from the
sequences in the input dataset. This data structure enables the fast extraction
of all the frequent domains of length up to a fixed value w. Then, we exploit a
constrained co-clustering algorithm [34] in order to find protein domain classes
and the associated protein groups. Finally, we associate the obtained clusters by
means of a statistical measure. This measure individuates for each domain clus-
ter the corresponding protein cluster containing it. The statistical measure can
associate some protein clusters to any domain cluster, or some protein cluster
to more than one domain cluster.

In the presented case study we consider a domain as frequent if it is found at
least in the 10% of the sequences given as input, and we set the maximum domain
length w equal to 15. The dataset matrix X (defined in Section[Z2) is built using
the frequency values stored in the prefix tree. In the definition of the co-clustering
constraints, we exploit the Levenshtein distance between two strings. Specifically,
we set a must-link constraint on every pair of domains having a distance less
than 2. With this limitation, we consider a must-link between two motifs that
require only two string operations (i.e. insertion, deletion or substitution) to
transform one motif into the other. Otherwise, all the pairs that match by at
most two characters are subject to a cannot-link constraint. The stop condition
of the co-clustering algorithm is set to be 7 = 1073.

With the above described experimental setting, we performed two types of
experiments. In the first experiment we compose the set of input sequences by
combing all the Burkholderia zenovorans’s protein sequences of genes belong-
ing to DCW cluster, stored in table Protein of Chado database. The aim of
this experiment is the identification of the protein domains common to a DCW
cluster gene subfamily. We obtain the six motifs reported in logos representa-
tion in Figure @ panel (a) shows the sequence logo representation of the two
domains associated to the fts gene family while panel (b) reports the sequence
logo representation of the four domains associated to mur gene family.

In order to validate the reliability of our approach we compare our results with
respect to the biological knowledge reported in the review by Clyde A. Smith [36].
Smith describes the three domain architectures characterizing the mur ligases.
Two of these domains have essentially conserved topology. The author deeply
studied the motif composition of one domain, ATPase. It is characterized by a
small number of essential structural motifs that include the P-loop motif. The
sequence comparisons reported by Smith show the strong conservation of P-loop
motif in all four mur ligases. From our analysis we obtain two motifs strictly
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Fig. 8. Sequence logo representation of the motifs obtained by the co-clustering module
on Burkholderia xenovorans’s DCW cluster protein sequences

related to the mur subfamily: in Figure [§[(b) we highlight the residues common
to the Smith’s consensus sequences.

In the second experiment, we exploit the Phylogenetic classification table

joined to the Protein table stored in Chado. The purpose of the second ex-
periment is to extend our analysis to other species of Burkholderia. In detail, we
single out 13 species:
Burkholderia cepacia, Burkholderia ambifaria, Burkholderia cenocepacia, Burk-
holderia multivorans, Burkholderia phytofirmans, Burkholderia vietnamiensis,
Burkholderia glumae Burkholderia xenovorans, Burkholderia dolosa, Burkholde-
ria graminis, Burkholderia phymatum, Burkholderia rhizozinica and Burkholde-
ria ubonensis.

The focus of the task is extending the previous association motif/gene sub-
family to all Burkholderia genus. This kind of analysis is linked to the possibil-
ity of understanding if there are one or more domains joined between different
species. Figure[@ shows the co-clusters obtained for genes murC, murD, and murE.
Our findings confirm that the gene subfamilies are associated with at least one
motif and this association is shared with all the orthologous sequences in the
Burkholderia’s species. The founded domains lead to identify homologous genes,
that may catch the evolutionary relationship among a set of genus. The new
pieces of information are then stored in the Chado database.
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Fig.9. Co-clusters obtained by performing the co-clustering module on a set of
Burkholderia species’ DCW cluster protein sequences

6 Conclusions

In this paper we reported on the on-going BIOBITS project whose goal is to
extensively develop a computational genomic comparison (known as syntheny)
focused on the Ca. Glomeribacter gigasporarum bacterium and arbuscular myc-
orrhiza fungi genome.

We presented the software architecture essentially developed over an existing
software layer provided by GMOD Community. GMOD system offers powerful
data visualization and analysis tools, data warehouse modules, such as BioMart
and the possibility to exploit import modules for the inclusion of data from the
external, public resources. Furthermore, it contains the Chado database which
presents an extensible and flexible model for any organism species built upon
the generic concept of feature which can be customized by the use of types and
ontologies.

We presented the logical data representation of the genomic and proteomic
components of the biological problem: it has the form of a double star schema -
the first one centered around the genetic fragments composing the genome and
the second one on the proteins encoded by the genes.
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Then, we describe the main software blocks of BIOBITS system: a Case-Based
Reasoning module and a co-clustering module, which allow the user to retrieve
and analyse in a flexible and intelligent way the data coming from the multidi-
mensional star schema. Both these modules complement each other. Case-Based
Reasoning and temporal analysis retrieve the information at different abstrac-
tion levels, as needed by the analyst. Co-clustering provides a novel information
to genetic sequences based on computational data mining algorithms.

In the last part of the paper, we describe a case study showing how these
modules inter-operate to provide new information. Interesting results have been
obtained, with a confirmation from other research studies. The confirmed reliabil-
ity of our approach encourages us to continue our research on the endosymbiont
bacterium Candidatus Glomeribacter gigasporarum.
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