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BioScape is a concurrent language motivated by the biological landscapes found at the interface of
biology and biomaterials [5]. It has been motivated by the need to model antibacterial surfaces,
biofilm formation, and the effect of DNAse in treating and preventing biofilm infections. As its
predecessor, SPiM [12], BioScape has a sequential semantics based on Gillespie’s algorithm [7], and
its implementation does not scale beyond 1000 agents. However, in order to model larger and more
realistic systems, a semantics that may take advantage of the new multi-core and GPU architectures
is needed. This motivates the introduction of parallel semantics, which is the contribution of this
paper: Parallel BioScape, an extension with fully parallelsemantics.

Process algebras have been successfully used in the modeling of biological systems, see [14, 4, 1],
where they are particularly attractive, because of their ability to accommodate new objects and new be-
havioral attributes as the complex biological system becomes better understood. However, most of the
modeling languages lack adequate support for the design of systems in which to study complex inter-
actions involving both spatial properties, movements in three-dimensional space, and stochastic inter-
actions. Recently, new spatial modeling languages allowing explicit description of temporal spatial dy-
namics of biochemical processes have been proposed (SpacePi [8], DCA [17], LΠ [16], Stochsim [10]).
Other agent-based platforms [9] include C-Immsim [15, 11] and PathSim visualizer [13]. However, few
of them support individual based, continuous motion, and continuous space stochastic simulation [3],
which are important features for modeling temporal spatialdynamics of biochemical processes accu-
rately. To address this problem in previous work we introduced BioScape [5], a language incorporating
both stochasticity and 3D spatial attributes.

Gillespie’s algorithm produces two outputs in each iteration: 1) the next reactionR to be executed
and 2) a slice of timet to advance the simulation clock. Since many reactions, including many instances
of the same reaction, may be available, the slice of timet does not correspond to the time thatR would
take, but an amount of time proportional to the time it would take to execute all available reactions. In
contrast, the parallel semantics will execute all available reactions, not just one instance of one reaction
R, and the first challenge is then how to calculate simulated time. Reaction times can vary substantially,
for example, some prokaryotic cell mitosis takes ten minutes, some plant cell mitosis takes about half an
hour, while some animal cell mitosis takes about three hours. If we trigger all reactions together, how do
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P,Q ::= 0 | X(u) | P | Q | (νa@r,rad).P D ::= /0 | D,X(x) = Mξ ,ω,σ FV(M) ⊆ x

M ::= π .P [+ M] u,v ::= a | b | · · · | x | y | · · ·

π ::= delay@r | !u(v) | ?u(x) | mov E ::= /0 | E,a@r,rad

Figure 1: Syntax

we advance the simulation clock? The solution we propose here consists of annotating each product of a
reaction with a timer indicating how long that reaction willtake.

For example, ifCell →30 Cell | Cell means that aCell takes 30 minutes to split, through mitosis,
into two daughter cells, then we will annotate the two daughter cells as{{Cell}}30 and{{Cell}}30. As
time lapses, the timer will be reduced, and when reaching{{Cell}}0, both cells will be available for new
reactions.

In Fig. 1 we define the syntax of the calculus, which slightly simplifies the syntax of [5] in order to
avoid decorating semantic processes with shapes, as definedat page 103.

We assume a set of channel names, denoted bya, b, and a set of variables, denoted byx, y, with
subscripts or superscripts, if needed. As usual,a is a1, . . . ,an, and similar forx. The empty process is
0. By X(u) we denote an instance of the entity defined byX. The actual parameters of the instance may
be either channel names or variables, in case the instance occurs in a definition. The processP | Q is the
parallel composition of processesP andQ. By (νa@r,rad).P we define the channel namea with two
parametersr andrad∈R≥0 within processP; the parameterr is the stochastic rate for communications
through channela andrad is the communication radius. The radius is the maximum distance between
processes in order to communicate through channela, and the reaction rate determines how long it takes
for two processes to react given that they are close enough tocommunicate.

Theheterogeneouschoice is denoted byM, whereπ.P [+ M] meansπ.P | π.P + M. Choices may
have reaction branches and movement branches. The reactionbranches are probabilistic (stochastic),
since reactions are subject to kinetic reaction rates, while the movement branches are non-deterministic,
since the movement of instances of entities is always enabled, provided there is enough space. The
prefix π denotes the action that the processπ.P can perform. The prefixdelay@r is a spontaneous and
unilateral reaction of a single process, wherer is the stochastic rate. The prefix !u denotes output, and
the prefix ?u denotes input. The prefixmov moves processes in space according to their diffusion rate
(ω) (see below). We use standard syntactic abbreviations suchasπ for π.0.

We denote byD a global list of definitions. The equalityX(x) = Mξ ,ω ,σ defines entityX with formal
parametersx, to be the choiceM with geometryξ ,ω ,σ , specifying a movement spaceξ , a stepω , and
a shapeσ . The choiceM describes the behavior ofX with a choice of prefixed processes. The selection
of one of the choices depends not only on the available interactions with other processes, but also on
the available space. The movement spaceξ is a set of point coordinates in the global coordinate system
defining a volume. Intuitively,X can move withinξ . The stepω ∈ R≥0, is the distance thatX can stir
in a movement, and it corresponds to the diffusion rate ofX; σ is the three-dimensional shape (sphere,
cube, etc.) ofX. The movement space for the empty process 0 is everywhere, the global space, and
its movement step is 0 by default. The entity variableX can be defined at most once inD, and the free
variables ofP, denoted byFV(P), must be a subset of the variablesx. We also writeX(x) = (π.π ′.P)ξ ,ω ,σ

as short forX(x) = (π.Y(x))ξ ,ω ,σ andY(x) = (π ′.P)ξ ,ω ,σ .
We useE to range over environments of channel name declarations. Bya@r,rad we declare channel

namea with reaction rater and reaction radiusrad. A channel namea appears at most once inE.
Consider the following simple example of a bacteriumBac, that can either move or divide into two

daughter cells.Bac is defined with movement spacemovB, movement stepstepB, and shapeshapeB.
Intuitively, bacteria can move withinmovB, with non-deterministic steps of lengthstepB, and the shape
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S.LOC
P≡ Q

{P}µ ≡ {Q}µ

S.LOC.NU

(νa@r,rad).{P}µ ≡ {(νa@r,rad).P}µ

S.LOC.PAR
µ1(shape(P))∪µ2(shape(Q)) = µ(shape(P | Q))

{P}µ1 | {Q}µ2 ≡ {P | Q}µ

S.NU.COM

(νa@r,rad).(νb@r′,rad′).A≡ (νb@r′,rad′).(νa@r,rad).A

S.NU.PAR
a 6∈ fn(B)

((νa@r,rad).A) | B≡ (νa@r,rad).(A | B)

Figure 2: Structural Equivalence of Spatial Configurations

shapeB is at all times contained withinmovB. The prefix mov represents a non-deterministic move-
ment of lengthstepB, whereasdelay@1.0.(Bac() | Bac()) represents mitosis, the division of a
bacterium into two daughter cells:Bac() | Bac(), and thedelay@1.0 prefix is used to model the fact
that division is not an instantaneous reaction.

Bac() = (mov.Bac() + delay@1.0.(Bac()|Bac()))movB,stepB,shapeB

A run-time system is represented by a parallel composition of entity instances (without free variables)
each with its shape, and located in some positions of a globalframe. We define theshape of processes
inductively as follows:
shape(0) = /0 shape(X(a)) = σ if X(x) = Mξ ,ω ,σ ∈ D
shape((νa@r,rad).P) = shape(P) shape(P | Q) = shape(P)⋒shape(Q)

where⋒ gives a shape obtained by composing two shapes trough juxtaposition. For different applications
we can choose suitable functions to realise⋒, we only require⋒ to be a commutative and associative
operator, i.e.σ1⋒σ2 = σ2⋒σ1 and(σ1⋒σ2)⋒σ3 = σ1⋒ (σ2⋒σ3).

We useµ to denote a map which applied to a shape locates it in the global space, by putting its
barycentre at a fixed point, orienting the shape, and possibly modifying it. Soµ(shape(P)) computes
the space occupied by a processP in the global coordinate system. Processes may also share channels
for communication.Spatial configurations, denoted byA, B, . . . are defined as follows:

A,B ::= {P}µ | A | B | (νa@r,rad)..A
Structural equivalence on configurations is defined in Fig. 2, omitting the rules for associativity and
commutativity of| and+. Parallel composition has neutral element{0}µ for any µ . Rule S.LOC uses
the standard structural equivalence of Pi-calculus processes. The premise of rule S.LOC.PAR assures
that the two equivalent processes occupy exactly the same space. In rule S.NU.PAR, fn is a function that
returns the set of free channel names of a configuration.

The (parallel) operational semantics of BioScape is based on two auxiliary reduction relations: a
stochastic relation,E ⊢ A

r
−→B, for reactions such as synchronisation and delay, defined inFig. 3, and a

non-deterministic (non-stochastic) relation,A−→B, for geometric transformations, in our case movement,
defined in Fig. 4. Notice that reduction axioms (SR.DELAY, SR.COM, NR.MOVE) only involve entities
(X(a)), and entities evolve according to one of the choices in their definitions. In rules SR.DELAY,
SR.COM and NR.MOVE, there is no check of whether the entities of the resulting process have enough
space, since this check is done in the parallel reductionrules PR.STOC, and PR.MOVE of Fig. 5. In

SR.DELAY
X(x) = (delay@r.P [+ M])ξ ,ω ,σ ∈ D

E ⊢ {X(a)}µ
r
−→{P[a/x]}µ

SR.STR
A≡ A′ E ⊢ A′ r−→B′ B′ ≡ B

E ⊢ A
r
−→B

SR.COM
X(x) = (!a(b).P [+ M])ξ ,ω ,σ ∈ D Y(y) = (?a(z).Q [+ N])ξ ′,ω ′,σ ′

∈ D dis(µ,µ ′)≤ rad

E,a@r,rad ⊢ {X(c)}µ | {Y(d)}µ ′
r
−→{P[c/x]}µ | {Q[d/y][b/z]}µ ′

Figure 3: Stochastic Reduction Relation
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NR.MOVE
µ ′ = translate(ω,µ) µ ′(σ)⊆ ξ X(x) = (mov.P [+ M])ξ ,ω ,σ ∈ D

{X(a)}µ−→{P[a/x]}µ ′

NR.STR
A≡ A′ A′−→B′ B′ ≡ B

A−→B

Figure 4: Non-stochastic Reduction Relation

particular, a stochastic (non-stochastic) redex is stuck,if there is not enough space for its reduct in the
configuration. Therefore, theevolution of systems in parallel BioScape produces configurations in which
space is consistent.

Fig. 3 defines the stochastic reduction relation of BioScape, E ⊢ A
r
−→B, wherer is the rate of the

channel used for synchronization or delay. We writedis(µ ,µ ′) for the distance between the origin of
µ and the origin ofµ ′. In rule SR.COM the conditiondis(µ ,µ ′) ≤ rad ensures that located processes
{X(c)}µ and {Y(d)}µ ′ are close enough to communicate through channela. The non-stochastic re-
duction relation of BioScape,A−→B, is defined in Fig. 4. Bytranslate(ω ,µ) we denote the function
that randomly generates a new mapµ ′, using the movement stepω and the old mapµ . The condition
µ ′(σ)⊆ ξ of rule NR.MOVE ensures the new located process{P[a/x]}µ ′ is within the movement space
ξ of X (see previous remark about not checking if the entity moves to an empty space).

For stochastic reductions we compute the duration of the reduction, based on the exponential distri-
bution associated with the propensity of the reduction. Since reductions may have different durations,
we introducetimed configurations, {{A}}n, meaning that, after a timen, this configuration will beA.
We extend structural equivalence to timed configurations byadding that{{A}}0 ≡ A, andA≡ B implies
{{A}}n ≡ {{B}}n. With the metavariablesF, andG we denote either spatial configurations or timed con-
figurations (extended configurations), i.e.,

F,G ::= A | {{A}}n | F | G | (νa@r,rad).F (n≥ 0)
We define a reduction strategy that given the whole configuration, first moves all the processes that

can be moved, and then executes all the stochastic reductions that can be executed, omitting only reduc-
tions which would lead to overlaps, i.e. configurations where some entities occupy the same space. Both
non-stochastic and stochastic reductions are applied in parallel. For this purpose, we define multi-hole
contextsC by the following grammar:

C ::= F | [ ] | C |C | (νx@r,rad).C
Congruence on multi-hole contexts is naturally induced by the congruence on configuration, associativity
and commutativity of the parallel operator, and standard rules for ν restrictions similar to S.NU.COM

and S.NU.PAR. Given this congruence any multi-hole context,C, may be written in acanonical form.
That is, there isC′, C ≡ C′ such thatC′ = ν1. . . .νn.F1 | · · · | Fm | [ ] | · · · | [ ], whereνi , 1≤ i ≤ n, is an
abbreviation forνai@ri,radi, and for all j, 1≤ j ≤ m, Fj = {{A}}n for someA, andn, or Fj = {P}µ
for someP, andµ . We say thata1@r1,rad1, . . . ,an@rn,radn is restr(C). In the following we assume
that multi-hole contexts are always in canonical form.

As already mentioned, our reduction strategy avoids spatial overlaps. In particular for moving re-
ductions we have to ensure that moves and reshaping are compatible with the available space, that is
after moving no entity overlaps with another entity. For stochastic reductions we have to assure that the
created entities have their space. To this aim we define the space of a configuration, and a predicate that
says whether a configuration does not have any overlapping entities.

Let space(F) be a function on configurationF that returns the space occupied by its processes
located in the global frame defined as follows.

space({P}µ ) = µ(shape(P)) space({{A}}n) = space(A)
space(F | G) = space(F)∪space(G) space((νa@r,rad).F) = space(F)

We say that a configurationF is OK if the various entities inF do not overlap, that is:
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PR.MOVE
Fi−→Gi (1≤ i ≤ p) C[G1] · · · [Gp] OKmv

C[F1] · · · [Fp]֌C[G1] · · · [Gp]

PR.TIMED
n= min{ni | 1≤ i ≤ p} C is untimed

C[{{A1}}
n1 ] · · · [{{Ap}}

np ] C[{{A1}}
n1−n] · · · [{{Ap}}

np−n]

PR.STOC

restr(C) ⊢ Ai
ri−→Bi ni = τ(ri ,Ci [Ai ]) (1≤ i ≤ p) C[C1[B1]] · · · [Cp[Bp]] OKst

C[C1[A1]] · · · [Cp[Ap]] 99KC[C1[{{B1}}
n1 ]] · · · [Cp[{{Bp}}

np ]]

PR.CONF
F֌ F1 99K F2 F ′

F−→F ′

Figure 5: Parallel Reduction Relation

{P}µ OK A OK ⇒ {{A}}n OK F OK ⇒ (νx@r,rad).F OK
F OK ∧ G OK ∧ space(F)∩space(G) = /0 ⇒ F | G OK

With the notion of OK configuration we define two notions ofwell-formedness of configurations. The
first notion is to be used for parallel move reductions and thesecond for parallel stochastic reductions.
Theses notions are to be used to enforce(i) the fact that only reductions that have enough space for
their reduct are allowed, and(ii) that we wantmaximal parallelism, that is any “extra” movement or
transformation would produce an overlap. In order to formalise this we first need to single out the sets
ℜmv andℜst of movement and stochastic redexes, i.e. we define:

• ℜmv= {{X(a)}µ | X(x) = (mov.P+M)ξ ,ω ,σ ∈ D},

• ℜst = {{X(a)}µ | X(x) = (delay@r.P+M)ξ ,ω ,σ ∈ D}∪

{{X(c)}µ | {Y(d)}µ ′ | X(x) = (!a(b).P+M)ξ ,ω ,σ ∈ D & Y(y) = (?a(z).Q+N)ξ ′,ω ′,σ ′
∈ D

& dis(µ ,µ ′)≤ rad} wherea@r,rad is the declaration of channela.

We extend the syntax of configurations by allowingunderlined extended configurations, defined by: an
underlined extended configurations is a configuration in which some spatial sub-configurations may be
underlined. Underlined configurations are the tool we use todefine maximal parallelism. We can then
define:

Definition 1. (i) An extended configuration F isOKmv if F is OK and F≡C[A] with A not underlined
and A∈ ℜmv and A−→B imply C[B] not OK.

(ii) An extended configuration F isOKst if F is OK and F≡C[A] with A not underlined and A∈ ℜst

and A
r

−→B imply C[B] notOK.

As a last notion, we say that a contextC is untimedif it does not contain timed configurations.
We are now able to explain our parallel reduction strategy, whose rules are given in Fig. 5. The first

three rules deal respectively with parallel movements, timed reductions, and stochastic reductions, while
the fourth rule maps extended configurations into extended configurations by applying first the parallel
movements, then the stochastic interactions, and finally byadvancing the time of the minimum required
to complete one or more interactions. In this way at the next iteration there would be new entities to be
moved and/or stochastically reduced.

The condition of obtaining an OKmv extended configuration in rule PR.MOVE assures that all pos-
sible moves inC[F1] · · · [Fp] which do not cause overlaps have been done in the reduction. Similar effect
is produced by the conditions that the extended configuration is OKst and that the context is timed in
the following two rules, respectively. Rule PR.STOC prescribes that the time of a stochastic reaction
depends (through the functionτ) on the rate of the reduction and on the number of available reactants.
The outer contextC is a multi-hole context, while the contextCi of the redexAi is a single hole context
capturing the surrounding environment that influences the speed of the reduction. We could incorporate
a counting function keeping track of the available reactants in the communication range (in a way similar
to what is done, e.g., in [2, 6]).

Examples, results of simulations, comparisons with related papers and discussions can be found in the
full version of this papers available athttp://www.di.unito.it/~dezani/papers/cdgsst.pdf.

http://www.di.unito.it/~dezani/papers/cdgsst.pdf
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