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The calculus of looping sequences is a formalism for describing the evolution of biological systems
by means of term rewriting rules. We enrich this calculus with a type discipline to guarantee the
soundness of reduction rules with respect to some biological properties deriving from the requirement
of certain elements, and the repellency of others. As an example, we model a toy system where the
repellency of a certain element is captured by our type system and forbids another element to exit a
compartment.

1 Introduction

While the approach of biologists to describe biological systems by mathematical means, allows them to
reason on the behaviour of the described systems and to perform quantitative simulations, such modelling
starts becoming more difficult both in specification and in analysis when the complexity of the described
systems increases. This has become one of the main motivations for the application of Computer Science
formalisms to the description of biological systems [15]. Other motivations can be found in the fact
that the use of formal means of Computer Science permits the application of analysis methods that are
practically unknown to biologists, such as static analysisand model checking.

Many formalisms have either been applied to or have been inspired from biological systems. The
most notable are automata-based models [1, 11], rewrite systems [9, 13], and process calculi [15, 16,
14, 8]. Models based on automata have the great advantage of allowing the direct use of many verifi-
cation tools such as model checkers. On the other side, models based on rewrite systems usually allow
describing biological systems with a notation that can be easily understood by biologists. However,
automata-like models and rewrite systems present, in general, problems from the point of view of com-
positionality. Compositionality allows studying the behaviour of a system componentwise, and is in
general ensured by process calculi, included those commonly used to describe biological systems.

In [5, 6, 12], Milazzo et al. developed a new formalism, called Calculus of Looping Sequences (CLS
for short), for describing biological systems and their evolution. CLS is based on term rewriting with
some features, such as a commutative parallel composition operator, and some semantic means, such as
bisimulations [6, 7], which are common in process calculi. This permits to combine the simplicity of
notation of rewrite systems with the advantage of a form of compositionality.

In chemistry, hydrophobicity is the physical property of a molecule (known as a hydrophobe) that is
repelled from a mass of water. Hydrophobic molecules tend tobe non–polar and thus prefer other neutral
molecules and non–polar solvents. Hydrophobic molecules in water often cluster together forming mi-
celles. From the other perspective, water on hydrophobic surfaces will exhibit a high contact angle (thus
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causing, for example, the familiar dew drops on a hydrophobic leaf surface). Examples of hydropho-
bic molecules include the alkanes, oils, fats, and greasy substances in general. Hydrophobic materials
are used for oil removal from water, the management of oil spills, and chemical separation processes to
remove non-polar from polar compounds. Hydrophobicity is just an example of repellency in Biochem-
istry. Other well known examples may be found on the behaviour of anions and cations, or at a different
level of abstraction, in the behaviour of the rh antigen for the different blood types.

As a counterpart, there may be elements, in nature, which always require the presence of other
elements (it is difficult to find a lonely atom of oxygen, they always appear in the pair O2).

In this paper we bring these aspects at their maximum limit, and, by abstracting away all the phe-
nomena which give rise/arise to/from repellency (and its counterpart), we assume that for each kind of
element of our reality we are able to fix a set of elements whichare required by the element for its
existence and a set of elements whose presence is forbidden by the element.

Thus, we enrich CLS with a type discipline which allows to guarantee the soundness of reduction
rules with respect to some relevant properties of biological systems deriving from the required and ex-
cluded kinds of elements. The key technical tool we use is to associate to each reduction rule the minimal
set of conditions an instantiation must satisfy in order to assure that applying this rule to a “correct” sys-
tem we get a “correct” system as well.

To the best of our knowledge [3, 2] are the only papers which study type disciplines for CLS. We gen-
eralise the proposal in [2] by focusing on the type disciplines for Present/Required/Excluded elements.

2 The Calculus of Looping Sequences

In this section we recall the Calculus of Looping Sequences (CLS). CLS is essentially based on term
rewriting, hence a CLS model consists of a term and a set of rewrite rules. The term is intended to
represent the structure of the modelled system, and the rewrite rules to represent the events that may
cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite alphabetE of symbols
ranged over bya,b,c, . . ..

Definition 2.1 (Terms) TermsT andsequencesS of CLS are given by the following grammar:

T ::= S
∣∣ (S)L ⌋T

∣∣ T |T
S ::= ε

∣∣ a
∣∣ S·S

where a is a generic element ofE , andε represents the empty sequence. We denote withT the infinite
set of terms, and withS the infinite set of sequences.

In CLS we have a sequencing operator· , a looping operator( )L, a parallel composition operator
| and a containment operator⌋ . Sequencing can be used to concatenate elements of the alphabetE .

The empty sequenceε denotes the concatenation of zero symbols. A term can be either a sequence or a
looping sequence (that is the application of the looping operator to a sequence) containing another term,
or the parallel composition of two terms. By definition, looping and containment are always applied
together, hence we can consider them as a single binary operator ( )L ⌋ which applies to one sequence
and one term.

The biological interpretation of the operators is the following: the main entities which occur in
cells are DNA and RNA strands, proteins, membranes, and other macro–molecules. DNA strands (and
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Figure 1: (i) represents(a·b·c)L; (ii) represents (a·b·c)L ⌋ (d ·e)L; (iii) represents
(a·b·c)L ⌋((d ·e)L | f ·g).

similarly RNA strands) are sequences of nucleic acids, but they can be seen also at a higher level of ab-
straction as sequences of genes. Proteins are sequence of amino acids which usually have a very complex
three–dimensional structure. In a protein there are usually (relatively) few subsequences, called domains,
which actually are able to interact with other entities by means of chemical reactions. CLS sequences
can model DNA/RNA strands and proteins by describing each gene or each domain with a symbol of
the alphabet. Membranes are closed surfaces, often interspersed with proteins, which may contain some-
thing. A closed surface can be modelled by a looping sequence. The elements (or the subsequences) of
the looping sequence may represent the proteins on the membrane, and by the containment operator it
is possible to specify the content of the membrane. Other macro–molecules can be modelled as single
alphabet symbols, or as short sequences. Finally, juxtaposition of entities can be described by the parallel
composition of their representations.

Brackets can be used to indicate the order of application of the operators, and we assume( )L ⌋ to
have precedence over| . In Figure 1 we show some examples of CLS terms and their visual represen-
tation, using(S)L as a short-cut for(S)L ⌋ε .

In CLS we may have syntactically different terms representing the same structure. We introduce a
structural congruence relation to identify such terms.

Definition 2.2 (Structural Congruence) The structural congruence relations≡S and≡T are the least
congruence relations on sequences and on terms, respectively, satisfying the following rules:

S1 · (S2 ·S3) ≡S (S1 ·S2) ·S3 S· ε ≡S ε ·S≡S S
S1 ≡S S2 implies S1 ≡T S2 and (S1)

L ⌋T ≡T (S2)
L ⌋T

T1 |T2 ≡T T2 |T1 T1 |(T2 |T3) ≡T (T1 |T2) |T3 T |ε ≡T T
(ε)L ⌋ε ≡T ε (S1 ·S2)

L ⌋T ≡T (S2 ·S1)
L ⌋T

Rules of the structural congruence state the associativityof · and | , the commutativity of the latter
and the neutral role ofε . Moreover, axiom(S1 ·S2)

L ⌋T ≡T (S2 ·S1)
L ⌋T says that looping sequences can

rotate. In the following, for simplicity, we will use≡ in place of≡T .
Rewrite rules will be defined essentially as pairs of terms, with the first term describing the portion

of the system in which the event modelled by the rule may occur, and the second term describing how
that portion of the system changes when the event occurs. In the terms of a rewrite rule we allow the
use of variables. As a consequence, a rule will be applicableto all terms which can be obtained by
properly instantiating its variables. Variables can be of three kinds: two of these are associated with
the two different syntactic categories of terms and sequences, and one is associated with single alphabet
elements. We assume a set of term variablesT V ranged over byX,Y,Z, . . ., a set of sequence variables
S V ranged over bỹx, ỹ, z̃, . . ., and a set of element variablesX ranged over byx,y,z, . . .. All these sets
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are possibly infinite and pairwise disjoint. We denote byV the set of all variables,V = T V ∪S V ∪X ,
and withρ a generic variable ofV . Hence, a pattern is a term that may include variables.

Definition 2.3 (Patterns) PatternsP andsequence patternsSP of CLS are given by the following gram-
mar:

P ::= SP
∣∣ (SP)L ⌋P

∣∣ P|P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP·SP
∣∣ x̃

∣∣ x

where a is a generic element ofE , and X, x̃ and x are generic elements ofT V ,S V andX , respectively.
We denote withP the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to patterns. Aninstantiationis
a partial functionσ : V →T . An instantiation must preserve the kind of variables, thusfor X ∈T V , x̃∈
S V andx∈ X we haveσ(X) ∈ T ,σ(x̃) ∈ S andσ(x) ∈ E , respectively. GivenP∈ P, with Pσ we
denote the term obtained by replacing each occurrence of each variableρ ∈ V appearing inP with the
corresponding termσ(ρ). With Σ we denote the set of all the possible instantiations and, givenP∈ P,
with Var(P) we denote the set of variables appearing inP. Now we define rewrite rules.

Definition 2.4 (Rewrite Rules) A rewrite rule is a pair of patterns(P1,P2), denoted with P1 7→P2, where
P1,P2 ∈ P, P1 6≡ ε and such that Var(P2) ⊆Var(P1).

A rewrite rule P1 7→P2 states that a termP1σ , obtained by instantiating variables inP1 by some
instantiation functionσ , can be transformed into the termP2σ . We define the semantics of CLS as a
transition system, in which states correspond to terms, andtransitions correspond to rule applications.

We define the semantics of CLS by resorting to the notion of contexts.

Definition 2.5 (Contexts) ContextsC are defined as:

C ::= �
∣∣ C|T

∣∣ T |C
∣∣ (S)L ⌋C

where T∈ T and S∈ S . The context� is called theempty context. We denote withC the infinite set
of contexts.

By definition, every context contains a single hole�. Let us assumeC,C′ ∈ C . With C[T] we denote
the term obtained by replacing� with T in C; with C[C′] we denote context composition, whose result
is the context obtained by replacing� with C′ in C. The structural equivalence is extended to contexts in
the natural way (i.e. by considering� as a new and unique symbol of the alphabetE ).

Rewrite rules can be applied to terms only if they occur in a legal context. Note that the general
form of rewrite rules does not permit to have sequences as contexts. A rewrite rule introducing a parallel
composition on the right hand side (asa 7→ b|c) applied to an element of a sequence (e.g.,m·a·m) would
result into a syntactically incorrect term (in this casem· (b|c) ·m). To modify a sequence, a pattern
representing the whole sequence must appear in the rule. Forexample, rulea·x̃ 7→ a| x̃ can be applied
to any sequence starting with elementa, and, hence, the terma·b can be rewritten asa|b, and the term
a·b·c can be rewritten asa|b·c.

The semantics of CLS is defined as follows.

Definition 2.6 (Semantics)Given a finite set of rewrite rulesR, thesemanticsof CLS is the least rela-
tion closed with respect to≡ and satisfying the following rule:

P1 7→ P2 ∈ R P1σ 6≡ ε σ ∈ Σ C ∈ C

C[P1σ ] −→C[P2σ ]
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As usual we denote with−→∗ the reflexive and transitive closure of−→.
Given a set of rewrite rulesR, the behaviour of a termT is the tree of terms to whichT may reduce.

Thus, amodelin CLS is given by a term describing the initial state of the system and by a set of rewrite
rules describing all the events that may occur.

3 A Type Discipline for Required and Excluded Elements

We classify elements inE with basic types. Intuitively, given a molecule represented by an element in
E , we associate to it a typet which specifies the kind of the molecule. We assume a fixed typing Γ for
the elements inE .

For each basic typet we assume to have a pair of sets of types(Rt,Et), wheret 6∈ Rt ∪ Et and
Rt∩Et = /0, saying that the presence of elements of typet requires the presence of elements whose type
is in Rt and forbids the presence of elements whose type is inEt. We consider onlylocal properties:
elements influence each other if they are either in the same compartment or they contain each other.

The type system infers the set of types of the elements of terms, checking that the constraints imposed
by the required and excluded types are satisfied. Types are pairs (P,R): whereP is the set of types of
presentelements (at the top level of a pattern),R is the set of types ofrequiredelements (that should still
be added to the term to represent acorrectsystem). The set ofexcludedelements is implicitly given by
EP =

⋃
t∈P Et.

Types are well formed, and pair of types are compatible, if their constraints on required and excluded
elements are not contradictory; compatible types can be combined.

Definition 3.1 (Auxiliary definitions) • A type(P,R) is well formedif P∩EP = P∩R= R∩EP = /0.

• Well formed types(P,R) and(P′,R′) are compatible(written (P,R) ⊲⊳ (P′,R′)) if

– EP∩P
′ = EP∩R

′ = /0, and

– EP′ ∩P= EP′ ∩R= /0.

• Given two compatible types(P,R) and(P′,R′) we define theirconjunction(P,R)⊔ (P′,R′) by

(P,R)⊔ (P′,R′) = (P∪P
′
,(R∪R

′)\ (P∪P
′)).

Basis are defined by:
∆ ::= /0

∣∣ ∆,x : ({t},Rt)
∣∣ ∆,η : (P,R)

whereη denotes a sequence or term variable. A basis∆ is well formedif all types in the basis are well
formed.

We check the safety of terms, sequences and more generally patterns using the typing rules of Figure
2. It is easy to verify that if we start from well-formed basis, then in a derivation we produce only well-
formed basis and well-formed types. Note that terms and sequences are typable from the empty context.
All the rules are obvious except for the last one which types looping sequences. In this rule we can put
a patternP inside a looping sequenceSPonly if all the types required fromP are provided bySP. This
is because ifP gets inside a compartment (represented by the looping sequence) it cannot interact any
more with the environment.

Given a context we define the possible types of terms that may fill the hole in the context.

Definition 3.2 (Typed Holes) Given a context C, and a well-formed type(P,R), the type(P,R) is OK for
the context C if X: (P,R) ⊢C[X] : (P′, /0) for someP′.
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∆,ρ : (P,R) ⊢ ρ : (P,R) ∆ ⊢ ε : ( /0, /0)
a : t ∈ Γ

∆ ⊢ a : ({t},Rt)

∆ ⊢ SP: (P,R) ∆ ⊢ SP′ : (P′,R′) (P,R) ⊲⊳ (P′,R′)

∆ ⊢ SP·SP′ : (P,R)⊔ (P′,R′)

∆ ⊢ P : (P,R) ∆ ⊢ P′ : (P′,R′) (P,R) ⊲⊳ (P′,R′)

∆ ⊢ P|P′ : (P,R)⊔ (P′,R′)

∆ ⊢ SP: (P,R) ∆ ⊢ P : (P′,R′) (P,R) ⊲⊳ (P′,R′) andR′ ⊆ P

∆ ⊢ (SP)L ⌋P : (P,R\P′)

Figure 2: Typing rules for Present/Required/Excluded Elements

The above notion guarantees that filling a context with a termwe obtain a correct system (whose type
is well formed and whose requirements are completely satisfied). It is to this kind of terms that we are
interested in applying reduction rules.

Note that there may be more than one type(P,R) such that(P,R) is OK for the contextC.
We can classify reduction rules according to the types we canderive for the right hand sides of the

rules.

Definition 3.3 (∆-(P,R)-Reduction Rules) A rule P1 7→ P2 is a ∆-(P,R)-reduction ruleif ∆ ⊢ P2 : (P,R).

An instantiationσ agreeswith a basis∆ (notationσ ∈ Σ∆) if ρ : (P,R) ∈ ∆ implies⊢ σ(ρ) : (P,R).
We can safely apply a rule to a typed term only if the instancesof the pattern on the right hand side

of the rule has a type that isOK for the context. More formally:

Definition 3.4 (Typed Semantics)Given a finite set of rewrite rulesR, the typed semanticsof CLS is
the least relation closed with respect to≡ and satisfying the following rule:

P1 7→ P2 ∈ R is a ∆-(P,R)-reduction rule P1σ 6≡ ε
σ ∈ Σ∆ C∈ C (P,R) is OK for C

C[P1σ ] =⇒C[P2σ ]

As expected, reduction preserves typing, in the sense that the obtained term is still typable, but the new
type can have a different set of present elements, while the set of required elements is always empty.
This choice makes possible typing creation and degradationof elements.

Theorem 3.5 If ⊢ T : (P, /0) and T=⇒ T ′, then⊢ T ′ : (P′, /0) for someP′.

We can infer the OK relation between types and contexts and which rules are∆-(P,R)-reduction rules by
using the machinery of principal typing [17]. In this way we can decide the applicability of the reduction
rules for the typed semantics. This is the content of the remaining part of this section.

We convene that for each variablex ∈ X there is ane-type variableϕx ranging over basic types,
and for each variableη ∈ T V ∪S V there are two variablesφη , ψη (calledp-type variableandr-type
variable) ranging over sets of basic types. Moreover we convene thatΦ ranges over formal unions and
differences of sets of basic types, e-type variables and p-type variables, andΨ ranges over formal unions
and differences of sets of basic types and r-type variables.
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⊢ ε : /0;( /0, /0); /0
a : t ∈ Γ

⊢ a : /0;(t,Rt); /0
⊢ x : {x : (ϕx,Ψ)};(ϕx,Ψ);{Ψ = Rϕx}

⊢ η : {η : (φη ,ψη )};(φη ,ψη ); /0

⊢ SP: Θ;(Φ,Ψ);Ξ ⊢ SP′ : Θ′;(Φ′
,Ψ′);Ξ′

⊢ SP·SP′ : Θ∪Θ′;(Φ,Ψ)⊔ (Φ′
,Ψ′);Ξ∪Ξ′∪{(Φ,Ψ) ⊲⊳ (Φ′

,Ψ′)}

⊢ P : Θ;(Φ,Ψ);Ξ ⊢ P′ : Θ′;(Φ′
,Ψ′);Ξ′

⊢ P | P′ : Θ∪Θ′;(Φ,Ψ)⊔ (Φ′
,Ψ′);Ξ∪Ξ′∪{(Φ,Ψ) ⊲⊳ (Φ′

,Ψ′)}

⊢ SP: Θ;(Φ,Ψ);Ξ ⊢ P : Θ′;(Φ′
,Ψ′);Ξ′

⊢ (SP)L ⌋P : Θ∪Θ′;(Φ,Ψ\Φ′);Ξ∪Ξ′∪{(Φ,Ψ) ⊲⊳ (Φ′
,Ψ′),Ψ′ ⊆ Φ}

Figure 3: Inference Rules for Principal Typing

A basis schemeΘ is a mapping from atomic variables to their e-type variables, and from sequence and
term variables to pairs of their p-type variables and r-typevariables:

Θ ::= /0
∣∣ Θ,x : ϕx

∣∣ Θ,η : (φη ,ψη ).

The rules for inferring principal typing use judgements of the shape:

⊢ P : Θ;(Φ,Ψ);Ξ

whereΘ is theprincipal basisin which P is well formed,(Φ,Ψ) is theprincipal typeof P, andΞ is the
set of constraints that should be satisfied. Figure 3 gives these inference rules.

Soundness and completeness of our inference rules can be stated as usual. Atype mappingmaps e-
type variables to basic types, p-type variables and r-type variables to sets of basic types. A type mapping
m satisfiesa set of constraintsΞ if all constraints inm(Ξ) are satisfied.

Theorem 3.6 (Soundness of Type Inference)If ⊢ P : Θ;(Φ,Ψ);Ξ and m is a type mapping which
satisfiesΞ, thenm(Θ) ⊢ P : (m(Φ),m(Ψ)).

Theorem 3.7 (Completeness of Type Inference)If ∆ ⊢ P : (P,R), then ⊢ P : Θ;(Φ,Ψ);Ξ for someΘ,
(Φ,Ψ), Ξ and there is a type mappingm that satisfiesΞ and such that∆ ⊇m(Θ), P= m(Φ), R= m(Ψ).

We put now our inference rules at work in order to decide applicability of typed reduction rules. We first
characterize by means of principal typing the OK relation and the classification of reduction rules.

Notably for deciding the OK relation it is not necessary to consider the whole context, but only
the part of the context which influences the typing of the hole. The key observation is that the typing
of a term inside two nested looping sequences does not dependon the typing of the terms outside the
outermost looping sequence. We callcore of the contextthat part. More formally:

Definition 3.8 Thecore of the contextC (notationcore(C)) is defined by:

• core(C) = C if C≡ � |T1 or C≡ (S1)
L ⌋(� |T1) |T2;

• core(C1[C2]) = C2 if C2 ≡ (S2)
L ⌋((S1)

L ⌋(� |T1) |T2).
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Remark thatcore is always unambiguously defined, since every context can be split in an unique way
into two contexts satisfying the given conditions.

Lemma 3.9 (OK Relation) Let the context C be such that⊢C[T] : (P0, /0) for some T,P0. A type(P,R)
is OK for C if and only if the type mappingm defined by

1. m(φX) = P,

2. m(ψX) = R,

satisfies the set of constraints

Ξ∪{Ψ = /0 | if φX or ψX occurs inΨ},

where ⊢ core(C)[X] : {X : (φX,ψX)};(Φ,Ψ);Ξ.

It is easy to check that ifcore(C) ≡ (S2)
L ⌋((S1)

L ⌋(� |T1) |T2), and⊢ T1 : (P1,R1), ⊢ S1 : (P′1,R
′
1), ⊢ T2 :

(P2,R2), ⊢ S2 : (P′2,R
′
2), then we get the following six constraints to verify:

• (φX,ψX) ⊲⊳ (P1,R1)

• (P′1,R
′
1) ⊲⊳ ((φX ,ψX)⊔ (P1,R1))

• ((ψX ∪R1)\ (φX ∪P1)) ⊆ P
′
1

• (P′1,R
′
1\ (φX ∪P1)) ⊲⊳ (P2,R2)

• (P′2,R
′
2) ⊲⊳ ((P′1,R

′
1\ (φX ∪P1))⊔ (P2,R2))

• (((R′1\ (φX ∪P1))∪R2)\ (P′1∪P2)) ⊆ P
′
2.

The set of constraints simplifies when the core context is shorter.

Lemma 3.10 (Classification of Reduction Rules)A rule P1 7→ P2 is a ∆-(P,R)-reduction rule if and
only if the type mappingm defined by

1. m(ϕx) = t if ∆(x) = ({t},Rt),

2. m(φη ) = P
′ if ∆(η) = (P′,R′),

3. m(ψη ) = R
′ if ∆(η) = (P′,R′),

satisfies the set of constraintsΞ∪{Φ = P,Ψ = R}, where ⊢ P2 : Θ;(Φ,Ψ);Ξ.

The above two lemmas, whose proof from the given definitions is easy, imply the following theorem
which gives the desired result.

Theorem 3.11 (Applicability of Reduction Rules) Let

⊢ P2 : Θ;(Φ,Ψ);Ξ and ⊢ core(C)[X] : {X : (φX,ψX)};(Φ′
,Ψ′);Ξ′

.

Then the rule P1 7→ P2 can be applied to the term C[P1σ ] such that⊢ C[P1σ ] : (P, /0) for someP if and
only if the type mappingm defined by

1. m(ϕx) = t if σ(x) : t ∈ Γ,

2. m(φη ) = P
′ if ⊢ σ(η) : (P′,R′),

3. m(ψη ) = R
′ if ⊢ σ(η) : (P′,R′),

satisfies the set of constraintsΞ∪Ξ′∪{Φ = φX,Ψ = ψX}∪{Ψ′ = /0 | if φX or ψX occurs inΨ′}.

Note that - after fixing the reduction rules - the sets of constraints for typing the r.h.s. of these rules can
be evaluated once for all. Instead, the sets of constraints for typing the core contexts need to be evaluated
at every application of a reduction rule. Luckily these setsof constraints includes at most six constraints.
The mappingm is immediate from the derivation of a type forP1σ . Finally, the checking thatm satisfies
a set of constraints requires only some substitutions.
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4 Examples

We start showing the properties of our type system by modelling an example of two molecules repelling
each other. As we have seen, one might model repellency in ourframework via the setEt.

Namely, if moleculea, of basic typet, is a repellent for moleculeb, of basic typet′ (and viceversa),
we will have thatEt = {t′} andEt′ = {t}. Note that this does not mean thata andb cannot be present
in the same term, actually they should just be contained in two different compartments. In fact, the term

T = a| (m)L ⌋b

with m of basic typet′′, whereEt′′ = /0 andRt = Rt′ = Rt′′ = /0, is typed by the pair({t,t′′}, /0) by the
following derivation, whereΓ = {a : t,b : t′,m : t′′}:

a : t ∈ Γ

⊢ a : ({t}, /0)

m : t′′ ∈ Γ

⊢ m : ({t′′}, /0)

b : t′ ∈ Γ

⊢ b : ({t′}, /0) ({t′′}, /0) ⊲⊳ ({t′}, /0)

⊢ (m)L ⌋b : ({t′′}, /0) ({t′′}, /0) ⊲⊳ ({t}, /0)

⊢ a| (m)L ⌋b : ({t,t′′}, /0)

As we can see the term is well typed, sincea andb are in two different compartments. The elementm
could also be replaced by any sequence whose (well formed) type is(P,R) where(P,R) ⊲⊳ ({t′}, /0) and
(P,R) ⊲⊳ ({t}, /0), that isP∩{t,t′} = /0 andR∩{t,t′} = /0. Moreover, if the term is at top level, thenR
should be /0.

Consider now the rule
R1 : (x̃)L ⌋(X |b) 7→ b| (x̃)L ⌋X

which moves the elementb outside the compartment. Such a rule could not be executed inT cause it
will result in the terma|b| (m)L ⌋ε , which could not be typed since({t,t′,t′′}, /0) is not well formed.
The rule could not be fired cause, following Definition 3.4,P1 = (x̃)L ⌋(X |b), P2 = b| (x̃)L ⌋X, σ(x̃) = m,
σ(X) = ε andC = a|�. Now, whileC[P1σ ] is well typed, the same does not hold forC[P2σ ].

This does not mean the ruleR1 could never be fired. In fact, if we consider the term

T ′ = a| (m)L ⌋b| (m)L ⌋ε

and we add the rule
R2 : a| (x̃)L ⌋X 7→ (x̃)L ⌋(a|X)

we still have that ruleR1 could not be fired onT ′ (same reasons as before), and we can neither execute the
rule R2 moving thea in the compartment containingb (in this case:C = (m)L ⌋ε |�, P2 = (x̃)L ⌋(a|X)
with σ(x̃) = m andσ(X) = b, thusP2σ could not be typed). We can, however, apply ruleR2, moving
a into the empty compartment. Namely, forC = (m)L ⌋b|�, P1 = a| (x̃)L ⌋X, P2 = (x̃)L ⌋(a|X) with
σ(x̃) = mandσ(X)= ε , we haveT ′≡C[P1σ ] with type({t,t′′}, /0) andT ′′ =C[P2σ ] = (m)L ⌋a| (m)L ⌋b
with type({t′′}, /0) - bothC[P1σ ] andC[P2σ ] are well typed. Now, fromT ′′ we can finally apply ruleR1,
bringingb outside the compartment. The context of the rule application will be C = (m)L ⌋a|� and the
patternsP1 = (x̃)L ⌋(X |b), P2 = b| (x̃)L ⌋X whereσ(x̃) = mandσ(X) = ε . BothC[P1σ ] andC[P2σ ] are
well typed and the resulting term will be

T ′′′ = b| (m)L ⌋a| (m)L ⌋ε .
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We now show an application for the set of required elements inour typing system. The idea is to
model the absorption of a given compoundc by a cell. The absorption is promoted by a receptorr which
should be present in the surface of the cell. We can model the effect of the absorption by using a different
symbol (thus a different type) for the compound when it enters the cell, namelyc′. The basic types of
c, r andc′ are, respectively,t, t′ andt′′. We also assume thatEt = Et′ = Et′′ = Rt = Rt′ = /0. The
requirement fort′′ (modelling the type of the compound inside a cell) should be,instead, the presence of
the receptor on the membrane surface. We can model this condition with the setRt′′ = {t′}. Thus, with
these basic types, we can model the rule for the absorption ofthe protein as:

R : c| (x̃)L ⌋X 7→ (x̃)L ⌋(X |c′)

without imposing explicitly the presence of the receptors on the patterns of the rule.
Actually, our type system guarantees that such a rule could not be applied to the termc| (m)L ⌋ε ,

while it could be applied to the termc| (m· r)L ⌋ε .
In a sense, the role of the promoter (the receptor) is modelled intrinsically on the type of the com-

pound brought inside the cell; its properties become transparent for the rewrite rules and controlled by
the type system.

5 Conclusions

This paper is a first step toward the application of typing to the safety of system transformations which
model biological phenomena. We focused on disciplines deriving by the requirement/exclusion of certain
elements, and used the type system to describe how repellency could be modelled. We would like
to underline that in nature it is not easy to find elements which completely exclude or require other
elements. Our abstraction, however allows us to deal with a simple qualitative model, and to observe
some basic properties of biological systems. A more detailed analysis, could also deal with quantities.
In this case, typing is useful in modelling quantitative aspects of CLS semantics on the line of [4]. In
particular, in [10], we show how types can be used to model repellency also by quantitative means, that
is slowing down undesired interactions.

As a future work, we plan to investigate type disciplines assuring different properties for CLS and
to apply this approach to other calculi for describing evolution of biological systems, in particular to P
systems.

An interesting application of this model may also abstract from biological phenomena. In a sense,
the composition of a contextC with a termT which satisfiesC may represent the agreement on acontract
betweenC andT. Namely, ifC satisfies(P,R) andT has type(P,R), thenT offers toC, via the elements
in P, everything that isrequiredbyC, viceversa,C has to satisfyT ’s requestR; modelling, in a sense, the
fact thatC andT mutually agree with each other.

Finally, modelling biological phenomena in CLS, especially for biologists, could be made more
intuitive with the use of a graphical interface, that would check most of the syntactical details, so that the
modeller could focus on the conceptual aspects of the formalization.

Acknowledgements. We thank the referees for their helpful comments. The final version of the paper
improved due to their suggestions.
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