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Abstract The calculus of looping sequences is a formalism for describing the evolution

of biological systems by means of term rewriting rules. Here we enrich this calculus with

a type discipline which preserves some biological properties deriving from the requirement

of certain elements, and the repellency of others. In particular, the type system guarantees

the soundness of the application of reduction rules with respect to the elements which are

required (all requirements must be satisfied) and to the elements which are excluded (two

elements which repel each other cannot occur in the same compartment).

As an example, we model the possible interactions (and compatibility) of different blood

types with different antigens. The type system does not allow transfusion with incompatible

blood types.

1 Introduction

While the approach of biologists to describe biological systems by mathematical means

makes possible to reason on the behaviour of systems and to perform quantitative sim-

ulations, such modelling becomes more difficult both in specification and in analysis

when the complexity of systems increases. This is one of the main motivations for

the application of Computer Science formalisms to the description of biological sys-

tems [19]. Other motivations can be found in the fact that the use of formal means

of Computer Science permits the application of analysis methods that are practically

unknown to biologists, such as static analysis and model checking.

Many formalisms have either been applied to or have been inspired from biolog-

ical systems. The most notable are automata-based models [2, 15], rewrite systems

[11, 17], and process calculi [19, 20, 18, 10]. Models based on automata have the great

advantage of allowing the direct use of many verification tools such as model checkers.

On the other side, models based on rewrite systems describe biological systems with a

notation that can be easily understood by biologists. However, automata-like models

and rewrite systems are not compositional. Studying the behaviour of a system com-

ponentwise is in general ensured by process calculi, included those commonly used to

describe biological systems.

In [7, 6, 16], Milazzo et al. developed a new formalism, called Calculus of Loop-

ing Sequences (CLS for short), for describing biological systems and their evolution.

CLS is based on term rewriting with some features, such as a commutative parallel
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composition operator, and some semantic means, such as bisimulations [6, 8], which

are common in process calculi. This permits to combine the notational simplicity of

rewrite systems with the advantage of a form of compositionality.

In chemistry, hydrophobicity is the physical property of a molecule (known as a

hydrophobe) that is repelled from a mass of water. Hydrophobic molecules tend to

be non-polar and thus prefer other neutral molecules and non-polar solvents. Hy-

drophobic molecules in water often cluster together forming micelles. From the other

perspective, water on hydrophobic surfaces will exhibit a high contact angle (thus

causing, for example, the familiar dew drops on a hydrophobic leaf surface). Exam-

ples of hydrophobic molecules include the alkanes, oils, fats, and greasy substances

in general. Hydrophobic materials are used for oil removal from water, the manage-

ment of oil spills, and chemical separation processes to remove non-polar from polar

compounds. Hydrophobicity is just an example of repellency in Biochemistry. Other

well-known examples may be found in the behaviour of anions and cations, or at a

different level of abstraction, in the behaviour of the rh antigen for the different blood

types.

As a counterpart, there may be elements, in nature, which always require the

presence of other elements (it is difficult to find a lonely atom of oxygen, they always

appear in the pair O2).

In [13], we brought these aspects at their maximum limit, and, by abstracting away

all the phenomena which give rise/arise to/from repellency (and its counterpart), we

assumed that for each kind of element of our reality we are able to fix a set of elements

which are required by the element for its existence and a set of elements whose presence

is forbidden by the element. We enriched CLS with a type discipline which guarantees

the soundness of reduction rules with respect to some relevant properties of biological

systems deriving from the required and excluded kinds of elements. The key technical

tool we use is to associate to each reduction rule the minimal set of conditions an

instantiation must satisfy in order to assure that applying this rule to a “correct”

system we get a “correct” system as well. This semantics is more liberal (in the sense

of allowing the application of more rules) than the one of [3] in which only type

preserving rules could be applied. However, the constraints that need to be verified,

in order to apply a rule, are more complex than the ones of [3].

In this paper we show that the approach of [13] subsumes the one of [3] and propose

a semantics that uses both. The advantage being that in the reduction process we first

try to verify the constraints of [3], and in case they are not satisfied we pass to verify

the ones of [13]. We also propose a type inference algorithm and show its soundness

and completeness.

The required/excluded elements properties modelled in this paper assure, through

type inference, that only compatible elements are combined together in the different

environments of the biological system in consideration. Thus the type system intrin-

sically yields a notion of correct (well-behaving) system according to the expressed

requirements.

While with our typed reductions from terms respecting the requests and repellency

conditions we generate only terms with the same property, in reality also dangerous

configurations can arise. We could adapt our typed semantics in order to allow the

creation of untypable terms. In these cases, we might be interested in signalling that
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some dangerous transition has occurred. We refer to the conclusion for a more tech-

nical discussion of this issue.

In the last few years there has been a growing interest in the use of type disciplines

to enforce biological properties. In [3] a type system has been defined to ensure the

well-formedness of links between protein sites within the Linked Calculus of Looping

Sequences (see [4]). In [14] three type systems are defined for the Biochemical Ab-

stract Machine, BIOCHAM (see [1]). The first one is used to infer the functions of

proteins in a reaction model, the second one to infer activation and inhibition effects

of proteins, and the last one to infer the topology of compartments. In [13] we have

defined a type system for the Calculus of Looping Sequences (see [7]) to guarantee the

soundness of reduction rules with respect to the requirement of certain elements, and

the repellency of others.1 In [12] we have proposed a type system for the Stochastic

Calculus of Looping sequences (see [5]) that allows for a quantitative analysis and

models how the presence of catalysers (or inhibitors) can modify the speed of re-

actions. Finally, in [9] we developed a type system to verify the excluded elements

property for BioAmbients [18].

1.1 Summary

The remainder of the paper is organised as follows. In Section 2 we briefly introduce

the calculus of looping sequences. In Section 3 we develop the type discipline for

required and excluded elements and we embed it into the semantics of the calculus.

In Section 4 we use the machinery of principal typing to infer the type of rewrite rules,

and check their applicability. In Section 5 we apply our typing discipline to regulate

the transfusion of different, possibly incompatible, blood types. Finally, we draw some

conclusion.

2 The Calculus of Looping Sequences

The Calculus of Looping Sequences (CLS) is essentially based on term rewriting,

hence a CLS model consists of a term and a set of rewrite rules. The term is intended

to represent the structure of the modelled system, and the rewrite rules to represent

the events that may cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite alphabet

E of symbols ranged over by a, b, c, . . ..

Definition 2.1 (Terms). Terms T and sequences S of CLS are given by the follow-

ing grammar:

T ::= S
∣∣ (S)

L ⌋T
∣∣ T |T

S ::= ǫ
∣∣ a

∣∣ S · S

where a is a generic element of E , and ǫ represents the empty sequence. We denote

with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator ( )
L
, a parallel

composition operator | and a containment operator ⌋ . Sequencing can be used to

1 The present paper is an improved and extended version of [13].



4 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

(i)

b

ca

b

ca

d e(ii)

b

ca

d e

f g

(iii)

Fig. 1. (i) represents (a · b · c)L; (ii) represents (a · b · c)L ⌋ (d · e)L; (iii) represents

(a · b · c)L ⌋ ((d · e)L | f · g).

concatenate elements of the alphabet E . The empty sequence ǫ denotes the concate-

nation of zero symbols. A term can be either a sequence or a looping sequence (that

is the application of the looping operator to a sequence) containing another term, or

the parallel composition of two terms. By definition, looping and containment are al-

ways applied together, hence we can consider them as a single binary operator ( )
L ⌋

which applies to one sequence and one term.

We call compartment any parallel composition of one or more terms. Given a

containment operator, (S)
L ⌋T , its looping sequence is S and its inner compartment

is the term T .

The biological interpretation of the operators is the following: the main entities

which occur in cells are DNA and RNA strands, proteins, membranes, and other

macro-molecules. DNA strands (and similarly RNA strands) are sequences of nu-

cleic acids, but they can be seen also at a higher level of abstraction as sequences of

genes. Proteins are sequence of amino acids which usually have a very complex three-

dimensional structure. In a protein there are usually (relatively) few subsequences,

called domains, which actually are able to interact with other entities by means of

chemical reactions. CLS sequences can model DNA/RNA strands and proteins by

describing each gene or each domain with a symbol of the alphabet. Membranes are

closed surfaces, often interspersed with proteins, which may contain something. A

closed surface can be modelled by a looping sequence. The elements (or the subse-

quences) of the looping sequence may represent the proteins on the membrane, and by

the containment operator it is possible to specify the content of the membrane. Other

macro-molecules can be modelled as single alphabet symbols, or as short sequences.

Finally, juxtaposition of entities can be described by the parallel composition of their

representations.

Brackets can be used to indicate the order of application of the operators, and we

assume ( )
L ⌋ to have precedence over | . In Figure 1 we show some examples of

CLS terms and their visual representation, using (S)
L

as a short-cut for (S)
L ⌋ ǫ.

In CLS we may have syntactically different terms representing the same structure.

We introduce a structural congruence relation to identify such terms.

Definition 2.2 (Structural Congruence). The structural congruence relations ≡S

and ≡T are the least congruence relations on sequences and on terms, respectively,

satisfying the following rules:
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S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ǫ ≡S ǫ · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and (S1)
L ⌋T ≡T (S2)

L ⌋T

T1 |T2 ≡T T2 |T1 T1 | (T2 |T3) ≡T (T1 |T2) |T3 T | ǫ ≡T T

(ǫ)
L ⌋ ǫ ≡T ǫ (S1 · S2)

L ⌋T ≡T (S2 · S1)
L ⌋T

Rules of structural congruence state the associativity of · and | , the commuta-

tivity of the latter and the neutral role of ǫ. Moreover, the axiom (S1 · S2)
L ⌋T ≡T

(S2 · S1)
L ⌋T says that looping sequences can rotate. In the following, for simplicity,

we will use ≡ in place of ≡T .

We say that an element a is present in a sequence S if S ≡ S′ · a · S′′ for some

S′, S′′. An element a is present in a compartment T if T ≡ T ′ |T ′′ for some T ′, T ′′

and either T ′ = S or T ′ = (S)L ⌋ for some S and in both cases a is present in S.

Rewrite rules will be defined essentially as pairs of terms, with the first term

describing the portion of the system in which the event modelled by the rule may

occur, and the second term describing how that portion of the system changes when

the event occurs. In the terms of a rewrite rule we allow the use of variables. As a

consequence, a rule will be applicable to all terms which can be obtained by properly

instantiating its variables. Variables can be of three kinds: two of these are associated

with the two different syntactic categories of terms and sequences, and one is asso-

ciated with single alphabet elements. We assume a set of term variables T V ranged

over by X,Y, Z, . . ., a set of sequence variables SV ranged over by x̃, ỹ, z̃, . . ., and a set

of element variables X ranged over by x, y, z, . . .. All these sets are possibly infinite

and pairwise disjoint. We denote by V the set of all variables, V = T V ∪SV ∪X , and

with ρ a generic variable of V . Hence, a pattern is a term that may include variables.

Definition 2.3 (Patterns). Patterns P and sequence patterns SP of CLS are given

by the following grammar:

P ::= SP
∣∣ (SP )L ⌋P

∣∣ P |P
∣∣ X

SP ::= ǫ
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E , and X, x̃ and x are generic elements of T V ,SV and

X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to patterns.

An instantiation is a partial function σ : V → T . An instantiation must preserve the

kind of variables, thus for X ∈ T V , x̃ ∈ SV and x ∈ X we have σ(X) ∈ T , σ(x̃) ∈ S
and σ(x) ∈ E , respectively. Given P ∈ P , with Pσ we denote the term obtained by

replacing each occurrence of each variable ρ ∈ V appearing in P with the correspond-

ing term σ(ρ). With Σ we denote the set of all the possible instantiations and, given

P ∈ P , with V ar(P ) we denote the set of variables appearing in P . Now we define

rewrite rules.

Definition 2.4 (Rewrite Rules). A rewrite rule, ℜ, is a pair of patterns, denoted

with P1 7→P2, where P1, P2 ∈ P , P1 6≡ ǫ and such that V ar(P2) ⊆ V ar(P1).

Example 2.5. An example of rewrite rule is

(a · x̃)L ⌋ (b |Y ) 7→ b | (a · x̃)L ⌋Y .
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This rule says that the element b, alone, can exit from a looping sequence containing

the element a.

A rewrite rule P1 7→P2 states that a term P1σ, obtained by instantiating variables

in P1 by some instantiation function σ, can be transformed into the term P2σ. We

define the semantics of CLS as a transition system, in which states correspond to

terms, and transitions correspond to rule applications.

We define the semantics of CLS by resorting to the notion of contexts.

Definition 2.6 (Contexts). Contexts C are defined as:

C ::= �
∣∣ C |T

∣∣ T |C
∣∣ (S)

L ⌋C

where T ∈ T and S ∈ S. The context � is called the empty context. We denote with

C the infinite set of contexts.

By definition, every context contains a single hole �. Let us assume C,C′ ∈ C.

With C[T ] we denote the term obtained by replacing � with T in C; with C[C′] we

denote context composition, whose result is the context obtained by replacing � with

C′ in C. The structural equivalence is extended to contexts in the natural way (i.e.

by considering � as a new and unique symbol of the alphabet E).

Rewrite rules can be applied to terms only if they occur in a legal context. Note

that the general form of rewrite rules does not permit to have sequences as contexts.

A rewrite rule introducing a parallel composition on the right hand side (as a 7→ b | c)
applied to an element of a sequence (e.g., m ·a ·m) would result into a syntactically

incorrect term (in this casem·(b | c)·m). To modify a sequence, a pattern representing

the whole sequence must appear in the rule. For example, rule a · x̃ 7→ a | x̃ can be

applied to any sequence starting with element a, and, hence, the term a ·b can be

rewritten as a | b, and the term a·b·c can be rewritten as a | b·c.

The semantics of CLS is defined as follows.

Definition 2.7 (Semantics). Given a finite set of rewrite rules R, the semantics of

CLS is the least relation closed with respect to ≡ and satisfying the following (set of)

rules:

ℜ = P1 7→ P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ C ∈ C

C[P1σ] −→ C[P2σ]

As usual we denote with −→∗ the reflexive and transitive closure of −→.

Given a set of rewrite rules R, the behaviour of a term T is the tree of terms to

which T may reduce. Thus, a model in CLS is given by a term describing the initial

state of the system and by a set of rewrite rules describing all the events that may

occur.

Example 2.8. Starting from the term

d | (a)
L ⌋ ((a · c)L ⌋ ((a · b · c)L ⌋ (b)))

we can apply the rule in Example 2.5 three times, using the instantiations and contexts

in Fig. 2, obtaining the behaviour
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x̃ Y C

(1) b · c ǫ d | (a)L ⌋ ((a · c)L ⌋�)

(2) c (a · b · c)L ⌋ ǫ d | (a)
L ⌋�

(3) ǫ (a · c)L ⌋ ((a · b · c)L ⌋ ǫ)) d |�

Fig. 2. Instantiations and Contexts of Example 2.8

d | (a)
L ⌋ ((a · c)L ⌋ ((a · b · c)L ⌋ (b))) −→ d | (a)

L ⌋ ((a · c)L ⌋ (b | (a · b · c)L ⌋ ǫ)) (∗)

−→ d | (a)L ⌋ (b | (a · c)L ⌋ ((a · b · c)L ⌋ ǫ)) (∗∗)

−→ b | d | (a)
L ⌋ ((a · c)L ⌋ ((a · b · c)L ⌋ ǫ)) (∗ ∗ ∗)

2.1 Modelling Guidelines

CLS can be used to model biomolecular systems analogously to what is done, e.g,

by Regev and Shapiro in [20] for the π-calculus. An abstraction is a mapping from

a real-world domain to a mathematical domain, which may allow highlighting some

essential properties of a system while ignoring other, complicated, ones. In [20], Regev

and Shapiro show how to abstract biomolecular systems as concurrent computations

by identifying the biomolecular entities and events of interest and by associating

them with concepts of concurrent computations such as concurrent processes and

communications.

The use of rewrite systems, such as CLS, to describe biological systems is founded

on a different abstraction. Usually, entities (and their structures) are abstracted by

terms of the rewrite system, and events by rewrite rules.

In order to describe cells, it is quite natural to consider molecular populations

and membranes. Molecular populations are groups of molecules that are in the same

compartment of the cell. As we have said before, molecules can be of many types:

they could be classified as DNA and RNA strands, proteins, and other molecules.

DNA and RNA strands and proteins can be seen as non-elementary objects. DNA

strands are composed by genes, RNA strands are composed by parts corresponding to

the transcription of individual genes, and proteins are composed by parts having the

role of interaction sites (or domains). Other molecules are considered as elementary

objects, even if they are complexes.

Membranes are considered as elementary objects, in the sense that we do not de-

scribe them at the level of the lipids they are made of. The only interesting properties

of a membrane are that it may have a content (hence, create a compartment) and

that it may have molecules on its surface.

CLS is a very scalable formalism. On the one hand, depending on the level of

detail one is interested in the analysis, an atomic element could range from the quark

level (in a very low level analysis) to a species individual (in the study of popula-

tion dynamics).2 On the other hand, a looping sequence can be used to model cell

compartmentalisation, or, from a macroscopic point of view, ecoregions bounded by

2 Atoms, chemicals, molecules, protein domains, proteins, cells, etc. are other possible elements one
could model, at different levels of abstraction, as CLS simple alphabet symbols.
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Biomolecular Event Examples of CLS Rewrite Rule

State change a 7→ b

ex · a · ey 7→ ex · b · ey

Complexation a | b 7→ c

ex · a · ey | b 7→ ex · c · ey

Decomplexation c 7→ a | b
ex · c · ey 7→ ex · a · ey | b

Catalysis c |P1 7→ c |P2 (where P1 7→ P2 is the catalysed event)

Membrane crossing a | (ex)L ⌋X 7→ (ex)L ⌋ (a |X)

(ex)L ⌋ (a |X) 7→ a | (ex)L ⌋X

ex · a · ey | (ez)L ⌋X 7→ (ez)L ⌋ (ex · a · ey |X)

(ez)L ⌋ (ex · a · ey |X) 7→ ex · a · ey | (ez)L ⌋X

Catalyzed a | (b · ex)L ⌋X 7→ (b · ex)L ⌋ (a |X)

membrane crossing (b · ex)L ⌋ (a |X) 7→ a | (b · ex)L ⌋X

ex · a · ey | (b · ez)L ⌋X 7→ (b · ez)L ⌋ (ex · a · ey |X)

(b · ez)L ⌋ (ex · a · ey |X) 7→ ex · a · ey | (b · ez)L ⌋X

Membrane joining (ex)L ⌋ (a |X) 7→ (a · ex)L ⌋X

(ex)L ⌋ (ey · a · ez |X) 7→ (ey · a · ez · ex)L ⌋X

Catalyzed (b · ex)L ⌋ (a |X) 7→ (a · b · ex)L ⌋X

Table 1. Guidelines for the abstraction of biomolecular events into CLS.

geographical frontiers (expressing the possible environments for a migrant popula-

tion). In the application of Section 5, we focus on a level in which a looping sequence

might either denote the surface of a cell (when modelling the red blood cells) or of an

organic tissue containing these kind of cells.

We give now some examples of biomolecular events of interest and their descrip-

tion in CLS. The simplest kind of event is the change of state of an elementary

object. Then, we consider interactions between molecules: in particular complexa-

tion, decomplexation and catalysis. These interactions may involve single elements of

non-elementary molecules (DNA and RNA strands, and proteins). Moreover, there

can be interactions between membranes and molecules: in particular a molecule may

cross or join a membrane.

Table 1 lists some guidelines (taken from [8]) for the abstraction into CLS rules

of biomolecular events. Entities are associated with CLS terms: elementary objects

are modelled as alphabet symbols, non-elementary objects as CLS sequences and

membranes as looping sequences. Biomolecular events are associated with CLS rewrite

rules.
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3 A Type Discipline for Required and Excluded Elements

We classify elements in E with basic types. Intuitively, given a molecule represented by

an element in E , we associate to it a type t which specifies the kind of the molecule.

We assume a fixed typing Γ for the elements in E .

For each basic type t we assume to have a pair of sets of basic types (Rt, Et),

where t 6∈ Rt ∪ Et and Rt ∩ Et = ∅, saying that the presence of elements of basic type

t requires the presence of elements whose basic type is in Rt and forbids the presence

of elements whose basic type is in Et. We consider only local properties: elements

influence each other if they are either present in the same compartment or one is

present in the looping sequence and the other is present in the inner compartment of

a containment operator.

The type system derives the set of types of patterns (and therefore also terms),

checking that the constraints imposed by the required and excluded sets are satisfied.

Types are pairs (P, R): P is the set of basic types of elements that are present in

the top-level compartment of the term, and R is the set of basic types of elements

that are required to fulfill the requirements of the elements present in the top-level

compartment of the term. The set of excluded elements for a given set P of present

elements is given by EP =
⋃

t∈P Et.

Types, (P, R), are well formed if the required types, R, are required by the present

elements, P, and the constraints on required and excluded elements are not contra-

dictory. Pairs of types are compatible if required and excluded types are compatible

with the union of their present types. Pairs of compatible types can be combined.

Definition 3.1 (Auxiliary definitions). • A type (P, R) is well formed if

– R ⊆
⋃

t∈P Rt, and

– P ∩ EP = P ∩ R = R ∩ EP = ∅.

• Well-formed types (P, R) and (P′, R′) are compatible (written (P, R) ⊲⊳ (P′, R′)) if

– EP ∩ P
′ = EP ∩ R

′ = ∅, and

– EP′ ∩ P = EP′ ∩ R = ∅.

• Given two compatible types (P, R) and (P′, R′) we define their conjunction (P, R)⊔
(P′, R′) by

(P, R) ⊔ (P′, R′) = (P ∪ P
′, (R ∪ R

′) \ (P ∪ P
′)).

Given a basic type t, ({t}, Rt), is well formed, indeed, it is the type of a compartment

containing only elements of type t. A requirement we could have asked is that of

repellency being symmetric, that is: for all t, t′, if t ∈ Et′ , then t
′ ∈ Et. However,

such a requirement would not change the type system, since compatibility of types

encompasses this property.

Basis are defined by:

∆ ::= ∅
∣∣ ∆, x : ({t}, Rt)

∣∣ ∆, η : (P, R)

where η denotes a sequence or term variable. A basis ∆ is well formed if all types in

the basis are well formed. We check the safety of terms, sequences and more generally

patterns using the typing rules of Figure 3. It is easy to verify that, if we start from
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∆, ρ : (P, R) ⊢ ρ : (P, R) (Tvar) ∆ ⊢ ǫ : (∅, ∅) (Teps)
a : t ∈ Γ

(Tel)
∆ ⊢ a : ({t}, Rt)

∆ ⊢ SP : (P, R) ∆ ⊢ SP ′ : (P′, R′) (P, R) ⊲⊳ (P′, R′)
(Tseq)

∆ ⊢ SP ·SP ′ : (P, R) ⊔ (P′, R′)

∆ ⊢ P : (P, R) ∆ ⊢ P ′ : (P′, R′) (P, R) ⊲⊳ (P′, R′)
(Tpar)

∆ ⊢ P |P ′ : (P, R) ⊔ (P′, R′)

∆ ⊢ SP : (P, R) ∆ ⊢ P : (P′, R′) (P, R) ⊲⊳ (P′, R′) and R
′ ⊆ P

(Tcomp)
∆ ⊢ (SP )

L ⌋P : (P, R \ P′)

Fig. 3. Typing Rules

well-formed basis, then in a derivation we produce only well-formed basis and well-

formed types. Note that terms and sequences are typable from the empty basis.

All the rules are trivial except for the last one which types containment operators.

In this rule we can put a pattern P inside a containment operator with looping

sequence SP only if all the types required from P are provided by SP . This is because

the elements present in the inner compartment can not interact with the elements

present outside the looping sequence.

It is easy to verify that the type system of Figure 3 enjoys weakening, i.e. that

∆ ⊢ P : (P, R) and ∆ ⊆ ∆′ imply ∆′ ⊢ P : (P, R).

Moreover also the following substitution properties will be handy.

Lemma 3.2. If ∆ ⊢ C[P ] : (P, R) then

1. ∆ ⊢ P : (P′, R′) for some (P′, R′), and

2. ∆, X : (P′, R′) ⊢ C[X ] : (P, R), and

3. if P ′ is such that ∆ ⊢ P ′ : (P′, R′), then ∆ ⊢ C[P ′] : (P, R).

Proof. Easy by induction on the definition of contexts.

We are interested in applying reduction rules only to correct terms, whose type is well

formed and whose requirements are completely satisfied. More formally:

Definition 3.3. A term T is correct if ⊢ T : (P, ∅) for some P.

Example 3.4. Assuming E = {a, b, c, d} Γ = {a : ta, b : tb, c : tc, d : td}
Rb = {tc} Rc = {ta} Ed = {tb, tc} Ra = Rd = Ea = Eb = Ec = ∅ and using the

rules in Figure 3, the terms in lines (∗) and (∗∗) of Example 2.8 have type ({ta, td}, ∅),
so they are correct terms. However, the term in line (∗ ∗ ∗), does not have a type,

since the element b is in the same compartment of the element d, but the basic type

of b is in the set of the elements excluded by the presence of the basic type of d.

Rules such that the left-hand-side and the right-hand-side patterns have the same

type do not change the type of terms to which they are applied.
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Definition 3.5 (∆-safe rules). A rewrite rule P1 7→ P2 is ∆-safe if ∆ ⊢ P1 : (P, R)

and ∆ ⊢ P2 : (P, R) for some (P, R).

When we apply a ∆-safe rule to a term we need to choose an instantiation which

agrees with ∆, i.e. σ must replace the variables in the domain of ∆ as prescribed by

∆. More formally:

Definition 3.6. An instantiation σ agrees with a basis ∆ (notation σ ∈ Σ∆) if

ρ : (P, R) ∈ ∆ implies ⊢ σ(ρ) : (P, R).

As expected agreement between substitutions and basis assures type preservation,

as proved in the following lemma.

Lemma 3.7. If σ ∈ Σ∆, then ⊢ Pσ : (P, R) if and only if ∆ ⊢ P : (P, R).

Proof. (⇐) By induction on ∆ ⊢ P : (P, R). Consider the last applied rule.

• If the rule is (Tvar), the proof follows from σ ∈ Σ∆. For rules (Teps), (Tel) the

fact that P is a term implies that Pσ = P and, moreover, it is typable from

the empty environment.

• Rule (Tseq). In this case P = SP ·SP ′, (P, R) = (P′′, R′′) ⊔ (P′, R′), ∆ ⊢ SP :

(P′′, R′′), ∆ ⊢ SP ′ : (P′, R′) and (P′′, R′′) ⊲⊳ (P′, R′). By induction hypotheses, ⊢
SP σ : (P′′, R′′) and ⊢ SP ′ σ : (P′, R′). Therefore, since SP σ·SP ′ σ = (SP·SP ′)σ,

applying rule (Tseq) we conclude ⊢ (SP ·SP ′)σ : (P, R).

• For rules (Tpar), (Tcomp) the proof is similar.

(⇒) By induction on P .

• If P = ρ, the proof follows from σ ∈ Σ∆. If P = ǫ, or P = a, by weakening.

• Let P be SP·SP ′. Since (SP·SP ′)σ = SP σ·SP ′ σ, the fact that ⊢ (SP·SP ′)σ :

(P, R) implies that the last applied rule must be (Tseq). Therefore, (P, R) =

(P′′, R′′) ⊔ (P′, R′), (P′′, R′′) ⊲⊳ (P′, R′), ⊢ SP σ : (P′′, R′′), and ⊢ SP ′ σ : (P′, R′).

By induction hypothesis on SP and SP ′ we get ∆ ⊢ SP : (P′′, R′′), and ∆ ⊢
SP ′ : (P′, R′). Applying rule (Tseq) we conclude ∆ ⊢ SP ·SP ′ : (P, R) ⊔ (P′, R′).

• If P = P ′ |P ′′ or P = (SP )
L ⌋P ′ the proof is similar.

Since ∆-safe rules do not modify the type of a term, typing creation and degra-

dation of elements is not possible. Moreover, also movements of elements between

membranes are very limited.

Example 3.8. Assuming the sets in Example 3.4 and the basis

∆ = {x̃ : ({tb, tc}, ∅), Y : (∅, ∅)}
the rule in Example 2.5 is a ∆-safe rule, because the left and the right side of the rule

have the same type:

∆ ⊢ (a · x̃)L ⌋ (b |Y ) : ({ta, tb, tc}, ∅) ∆ ⊢ b | (a · x̃)L ⌋Y : ({ta, tb, tc}, ∅)
However, using the basis

∆′ = {x̃ : (∅, ∅), Y : ({ta}, ∅)}
the same rule is not a ∆′-safe rule, because left-hand-side and right-hand-side of the

rule do not have the same type:
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∆′ ⊢ (a · x̃)L ⌋ (b |Y ) : ({ta}, ∅) ∆′ ⊢ b | (a · x̃)L ⌋Y : ({ta, tb}, {tc})

To permit the application of rules that may introduce/remove/move elements pre-

serving safety, we introduce a restriction on rules based on the context of application

rather than, as for ∆-safety, the type of patterns involved in the rule. To this extent

we first characterize contexts by the types of terms that may fill their hole, and then

rules by the types of terms that their application produces.

Definition 3.9 (Typed Holes). Given a context C, and a well-formed type (P, R),

the type (P, R) is OK for the context C if X : (P, R) ⊢ C[X ] : (P′, ∅) for some P
′.

The above notion guarantees that filling a context with a term whose type is OK for

the context we obtain a correct term: note that there may be more than one type

(P, R) such that (P, R) is OK for the context C.

We can classify reduction rules according to the types we can derive for the right

hand sides of the rules.

Definition 3.10 (∆-(P, R)-safe rules). A rewrite rule P1 7→ P2 is ∆-(P, R)-safe if

∆ ⊢ P2 : (P, R).

To ensure correctness, we can apply a rule to a typed term only if the instance of

the pattern on the right-hand-side of the rule has a type that is OK for the context.

This choice makes possible typing creation and degradation of elements. On the other

hand, at every application of the rule we must check if the type of the right-hand-side

of the rule is OK for the context.

Example 3.11. Assuming the sets in Example 3.4 and the basis

∆ = {x̃ : (∅, ∅), Y : (∅, ∅)}
the rule in Example 2.5 is ∆-({ta, tb}, {tc})-safe, because the right side of the rule

has type ({ta, tb}, {tc}).
Let C1 be the context (a · c) |�, the type ({ta, tb}, {tc}) is OK for C1, since

X : ({ta, tb}, {tc}) ⊢ C1[X ] : ({ta, tb, tc}, ∅)
and so we can apply the rule in Example 2.5.

Instead, the type ({ta, tb}, ∅) is not OK for the context C2 = a |�, since

X : ({ta, tb}, ∅) ⊢ C2[X ] : ({ta, tb}, {tc})
and so we cannot apply the rule in Example 2.5.

Since both ∆-safe and ∆-(P, R)-safe rules preserve correctness, our semantics uses

both.

Definition 3.12 (Typed Semantics). Given a finite set of rewrite rules R, the

typed semantics of CLS is the least relation closed with respect to ≡ satisfying the

following (sets of) rules:

ℜ = P1 7→ P2 ∈ R is a ∆-safe rule P1σ 6≡ ǫ σ ∈ Σ∆ C ∈ C
(ℜ-∆)

C[P1σ] =⇒ C[P2σ]

ℜ = P1 7→ P2 ∈ R is a ∆-(P, R)-safe rule P1σ 6≡ ǫ

σ ∈ Σ∆ C ∈ C (P, R) is OK for C
(ℜ-∆-(P, R))

C[P1σ] =⇒ C[P2σ]
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∆ type of P1σ type of P2σ type of C[P2σ]

(1) ex : ({tb, tc}, {ta}) Y : (∅, ∅) ({ta, tb, tc}, ∅) ({ta, tb, tc}, ∅) ({ta, td}, ∅)
(2) ex : ({tc}, {ta}) Y : ({ta, tb, tc}, ∅) ({ta, tc}, ∅) ({ta, tb, tc}, ∅) ({ta, td}, ∅)
(3) ex : (∅, ∅) Y : ({ta, tc}, ∅) ({ta}, ∅) ({ta, tb}, ∅) —

Fig. 4. Basis and Typings of Example 3.14

Reduction preserves correctness, making possible typing of creation and degrada-

tion.

Theorem 3.13. If ⊢ T : (P, ∅) and T =⇒ T ′, then ⊢ T ′ : (P′, ∅) for some P
′.

Proof. We analyse the two sets of rules of the semantics separately. Let ℜ = P1 7→ P2.

Rules (ℜ-∆) From Definition 3.12, T = C[P1σ] and T ′ = C[P2σ] and σ ∈ Σ∆. By

hypothesis ⊢ C[P1σ] : (P, ∅). Therefore, Lemma 3.2.(1) implies ⊢ P1σ : (P′, R′) for

some (P′, R′), and from Lemma 3.7 we derive ∆ ⊢ P1 : (P′, R′). By Definition 3.5,

we get that ∆ ⊢ P2 : (P′, R′). Applying Lemma 3.7, we derive that ⊢ P2σ : (P′, R′).

Finally, from Lemma 3.2.(3) we obtain ⊢ C[P2σ] : (P, ∅).

Rules (ℜ-∆-(P, R)) From Definition 3.10, we have that ∆ ⊢ P2 : (P, R). Lemma 3.7

and σ ∈ Σ∆ imply that ⊢ P2σ : (P, R). Since, from Definition 3.12, (P, R) is OK for

C, we get that X : (P, R) ⊢ C[X ] : (P′, ∅) for some P′. Therefore, by Lemma 3.2.(3)

we conclude that ⊢ C[P2σ] : (P′, ∅).

Example 3.14. Using the sets in Example 3.4 we can study the behaviour of the

term in Example 2.8. That is the evolution of the initial term due to the application

of the (ℜ-∆) and (ℜ-∆-(P, R)) rules where ℜ = P1 7→ P2, with

• P1 = (a · x̃)L ⌋ (b |Y ), and

• P2 = b | (a · x̃)L ⌋Y

and ∆(1) is ∆ of the first line in Fig. 4, etc. Rule P1 7→ P2 is a ∆(1)-safe rule, since

∆(1) ⊢ P1 : ({ta, tb, tc}, ∅), and ∆(1) ⊢ P2 : ({ta, tb, tc}, ∅). Therefore, applying rule

(ℜ-∆) we get

d | (a)
L ⌋ ((a · c)L ⌋ ((a · b · c)L ⌋ (b))) =⇒ d | (a)

L ⌋ ((a · c)L ⌋ (b | (a · b · c)L ⌋ ǫ))

the reduction in line (∗) of Example 3.4.

The rule P1 7→ P2 is not a ∆(2)-safe rule, since ∆(2) ⊢ P1 : ({ta, tc}, ∅), and

∆(2) ⊢ P2 : ({ta, tb, tc}, ∅). However, P1 7→ P2 is a ∆(2)-({ta, tb, tc}, ∅)-safe rule and

the context of the reduction C(2), in the second line of Fig. 2, is OK for ({ta, tb, tc}, ∅).
So, applying rule (ℜ-∆-(P, R)) we get

d | (a)L ⌋ ((a · c)L ⌋ (b | (a · b · c)L ⌋ ǫ)) =⇒ d | (a)L ⌋ (b | (a · c)L ⌋ ((a · b · c)L ⌋ ǫ))

the reduction in line (∗∗) of Example 3.4.

Finally, for the third reduction neither of the conditions holds.
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• Firstly, P1 7→ P2 is not ∆(3)-safe, since ∆(3) ⊢ P1 : ({ta, tc}, ∅) and ∆(3) ⊢ P2 :

({ta, tb}, {tc}).

• Secondly, even though P1 7→ P2 is ∆(3)-({ta, tb}, {tc})-safe, the context C(3) =

d |� is not OK for ({ta, tb}, {tc}).

Indeed the term in line (∗ ∗ ∗) of Example 3.4 cannot be typed.

It is possible to prove that given ℜ = P1 7→ P2 if the requirements for applying

rule (ℜ-∆) are satisfied, then also the requirements for applying rule (ℜ-∆-(P, R)) are

satisfied.

Theorem 3.15. If P1 7→ P2 is a ∆-safe rule and P1σ 6≡ ǫ and σ ∈ Σ∆ and

C ∈ C and ⊢ C[P1σ] : (P′, ∅), then there is a type (P, R) OK for C such that

P1 7→ P2 is a ∆-(P, R)-safe rule.

Proof. From the hypothesis that P1 7→ P2 is a ∆-safe rule, and Definition 3.5 we have

that ∆ ⊢ P1 : (P, R), and ∆ ⊢ P2 : (P, R). Therefore, from Definition 3.10, P1 7→ P2

is a ∆-(P, R)-safe rule. From σ ∈ Σ∆, ∆ ⊢ P1 : (P, R) and Lemma 3.7 we derive

that ⊢ P1σ : (P, R). The hypothesis ⊢ C[P1σ] : (P′, ∅) and Lemma 3.2.(2) imply that

X : (P, R) ⊢ C[X ] : (P′, ∅), and so (P, R) is OK for C.

Given a set of rewrite rules R, the previous theorem proves that if a term is

reducible with the typed semantics whose reductions use only (ℜ-∆) rules (ℜ ∈ R),

then the term is also reducible with the typed semantics whose reductions use only

(ℜ-∆-(P, R)) rules (ℜ ∈ R). Example 3.14 shows that the vice versa is not true.

Moreover, a term reducible with the typed semantics whose reductions use both sets

of rules (ℜ-∆) and (ℜ-∆-(P, R)) is also reducible with the typed semantics whose

reductions use only rules (ℜ-∆-(P, R)). The advantage to have both sets of rules is

that, to check that ℜ = P1 7→ P2 may be applied to a well-typed term using rules

(ℜ-∆) is more efficient that checking that rules (ℜ-∆-(P, R)) are applicable. This is

because for both kinds of rules, once we have the substitution σ derived from the

matching of the pattern P1 with the term, we have to show that ∆ ⊢ P1 : (P1, R1),

and ∆ ⊢ P2 : (P2, R2) where σ ∈ Σ∆. Moreover, for rules (ℜ-∆) we have to see whether

P2 σ has the same type as P1 σ, whereas for rules (ℜ-∆-(P, R)), in addition to find the

type of P2 σ, we have to see whether this type is OK for the context. This implies to

derive the type of the context C. In the following section, we will show how to use

type inference to provide an algorithm for the typed semantics of Definition 3.12, that

takes advantage from these considerations.

4 Type Inference

The definition of typed semantics (Definition 3.12) is not effective, since we do not

know how to choose ∆ for (ℜ-∆) rules and ∆, P, R for (ℜ-∆-(P, R)) rules. In the present

section we define inference rules for principal typing [21] in order to derive which rules

are ∆-safe and which ones are ∆-(P, R)-safe, where the choices of ∆, P, R are guided

by the term we want to reduce. This will allow us to get an algorithm for checking

the applicability of reduction rules to typed terms preserving typing.

We convene that for each variable x ∈ X there is an e-type variable ϕx ranging

over basic types, and for each variable η ∈ T V ∪ SV there are two variables φη, ψη
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⊢ ǫ : ∅; (∅, ∅); ∅ (Reps)
a : t ∈ Γ

(Rel)
⊢ a : ∅; ({t}, Rt); ∅

⊢ x : {x : ({ϕx}, Rϕx
)}; ({ϕx}, Rϕx

); ∅ (Rvar1)

⊢ η : {η : (φη , ψη)}; (φη, ψη); ∅ (Rvar2)

⊢ SP : Θ; (Φ,Ψ); Ξ ⊢ SP ′ : Θ′; (Φ′,Ψ′); Ξ′

(Rseq)
⊢ SP ·SP ′ : Θ ∪ Θ′; (Φ,Ψ) ⊔ (Φ′,Ψ′); Ξ ∪ Ξ′ ∪ {(Φ,Ψ) ⊲⊳ (Φ′,Ψ′)}

⊢ P : Θ; (Φ,Ψ); Ξ ⊢ P ′ : Θ′; (Φ′,Ψ′); Ξ′

(Rpar)
⊢ P | P ′ : Θ ∪ Θ′; (Φ,Ψ) ⊔ (Φ′,Ψ′); Ξ ∪ Ξ′ ∪ {(Φ,Ψ) ⊲⊳ (Φ′,Ψ′)}

⊢ SP : Θ; (Φ,Ψ); Ξ ⊢ P : Θ′; (Φ′,Ψ′); Ξ′

(Rcomp)
⊢ (SP )

L ⌋P : Θ ∪ Θ′; (Φ,Ψ \ Φ′); Ξ ∪ Ξ′ ∪ {(Φ,Ψ) ⊲⊳ (Φ′,Ψ′),Ψ′ ⊆ Φ}

Fig. 5. Inference Rules for Principal Typing

(called p-type variable and r-type variable) ranging over sets of basic types. Moreover

we convene that Φ ranges over formal unions and differences of sets of basic types,

e-type variables and p-type variables, and Ψ ranges over formal unions and differences

of sets of basic types and r-type variables. We denote by µ a generic p-type, r-type or

e-type variable.

A basis scheme Θ is a mapping from atomic variables to their e-type variables, and

from sequence and term variables to pairs of their p-type variables and r-type vari-

ables:

Θ ::= ∅
∣∣ Θ, x : ϕx

∣∣ Θ, η : (φη, ψη).

The rules for inferring principal typings use judgements of the shape:

⊢ P : Θ; (Φ,Ψ); Ξ

where Θ is the principal basis in which P is well formed, (Φ,Ψ) is the principal type

of P , and Ξ is the set of constraints that should be satisfied. Figure 5 gives these

inference rules.

Example 4.1. We can use the inference rules in Figure 5 to infer the types of the

patterns of the rule in Example 2.5, where, again, we assume the basic types of

Example 3.4, obtaining

⊢ P1 : Θ; ({ta} ∪ φex, ψex \ ({tb} ∪ φY )); Ξ1

⊢ P2 : Θ; ({ta, tb} ∪ φex, {tc} ∪ (ψex \ φY )); Ξ2

where

Θ = { x̃ : (φex, ψex), X : (φY , ψY ) }

Ξ1 = { ({ta}, ∅) ⊲⊳ (φex, ψex), ({tb}, {tc}) ⊲⊳ (φY , ψY ),

({ta} ∪ φex, ψex) ⊲⊳ ({tb} ∪ φY , {tc} ∪ ψY ), {tc} ∪ ψY ⊆ {ta} ∪ φex }

Ξ2 = { ({ta}, ∅) ⊲⊳ (φex, ψex), ({ta} ∪ φex, ψex) ⊲⊳ (φY , ψY ), ψY ⊆ {ta} ∪ φex,

({tb}, {tc}) ⊲⊳ ({ta} ∪ φex, ψex \ φY ) }
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Soundness and completeness of our inference rules can be stated as usual. A type

mapping maps e-type variables to basic types, p-type variables and r-type variables to

sets of basic types. A type mapping m satisfies a set of constraints Ξ if all constraints

in m(Ξ) are satisfied.

Theorem 4.2 (Soundness of Type Inference). If ⊢ P : Θ; (Φ,Ψ); Ξ and m is a

type mapping which satisfies Ξ, then m(Θ) ⊢ P : (m(Φ),m(Ψ)).

Proof. By induction on derivations, and by cases on the last applied rule.

• For rules (Reps), (Rel), (Rvar1), and (Rvar2) the result is trivial.

• Rule (Rseq). In this case the conclusion of the rule is ⊢ SP ·SP ′ : Θ∪Θ′; (Φ,Ψ)⊔
(Φ′,Ψ′); Ξ∪Ξ′∪{(Φ,Ψ) ⊲⊳ (Φ′,Ψ′)}, and the assumptions are ⊢ SP : Θ; (Φ,Ψ); Ξ

and ⊢ SP ′ : Θ′; (Φ′,Ψ′); Ξ′. Since m satisfies Ξ and Ξ′, by induction hypothesis,

and weakening, we derive that m(Θ ∪ Θ′) ⊢ SP : (m(Φ),m(Ψ)) and m(Θ ∪ Θ′) ⊢
SP ′ : (m(Φ′),m(Ψ′)). Moreover, since m satisfies {(Φ,Ψ) ⊲⊳ (Φ′,Ψ′)}, we have that

(m(Φ),m(Ψ)) ⊲⊳ (m(Φ′),m(Ψ′)). So rule (Tseq) can be applied, and m(Θ ∪ Θ′) ⊢
SP ·SP ′ : (m(P),m(R)) ⊔ (m(P′),m(R′)).

• For rules (Rpar), and (Rcomp) the result can be proved like for rule (Rseq).

Theorem 4.3 (Completeness of Type Inference). If ∆ ⊢ P : (P, R), then ⊢ P :

Θ; (Φ,Ψ); Ξ for some Θ, (Φ,Ψ), Ξ and there is a type mapping m that satisfies Ξ and

such that ∆ ⊇ m(Θ), P = m(Φ), R = m(Ψ).

Proof. By induction on the derivation of ∆ ⊢ P : (P, R).

• If the last rule of the derivation is (Teps), (Tel), or (Tvar) the result is obvious.

Note that, for (Tvar) in the inference we distinguish the case of element variables

(from sequence or term variables).

• Rule (Tseq). The conclusion of the rule is ∆ ⊢ SP ·SP ′ : (P, R) ⊔ (P′, R′), and the

assumptions are ∆ ⊢ SP : (P, R), ∆ ⊢ SP ′ : (P′, R′) and the condition (P, R) ⊲⊳

(P′, R′). By induction hypothesis, there are Θ, Φ, Ψ, Ξ, Θ′, Φ′, Ψ′, Ξ′ such that

⊢ SP : Θ; (Φ,Ψ); Ξ and ⊢ SP ′ : Θ′; (Φ′,Ψ′); Ξ′. These are the assumptions of rule

(Rseq), whose conclusion is ⊢ SP·SP ′ : Θ∪Θ′; (Φ,Ψ)⊔(Φ′,Ψ′); Ξ∪Ξ′∪{(Φ,Ψ) ⊲⊳

(Φ′,Ψ′)}. Moreover, by induction there is a type mapping m′ satisfying Ξ such that

∆ ⊇ m′(Θ), P = m′(Φ) and R = m′(Ψ), and there is a type mapping m′′ satisfying

Ξ′ such that ∆ ⊇ m′′(Θ′), P′ = m′′(Φ′) and R
′ = m′′(Ψ′). Therefore, we derive

∆ ⊇ m′(Θ) ∪ m′′(Θ′) and (P, R) ⊔ (P′, R′) = (m′(Φ),m′(Ψ)) ⊔ (m′′(Φ′),m′′(Ψ′)).

Since the basis m′(Θ) and m′′(Θ′) are both subsets of the same basis ∆, then for

all the (e-type, p-type or r-type) variables µ such that µ ∈ dom(m′) ∩ dom(m′′)

we get m′(µ) = m′′(µ). Therefore the mapping m

m(µ) =

{
m′(µ) if µ ∈ dom(m′)

m′′(µ) if µ ∈ dom(m′′)

is well defined.

Moreover, since m satisfies Ξ, Ξ′ and (Φ,Ψ) ⊲⊳ (Φ′,Ψ′), then m satisfies also all

the constraints of the conclusion of the rule (Rseq).

• If the last rule is (Tpar) or (Tcomp) the proof is similar.
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Now, we put our inference rules at work in order to decide the applicability of typed

reduction rules, for both ∆-safe and ∆-(P, R)-safe rules.

To decide applicability of ∆-safe rules, we characterize ∆-safe rules.

Lemma 4.4 (Characterization of ∆-safe rules). A rule P1 7→ P2 is a ∆-safe rule

if and only if the type mapping m defined by

1. m(ϕx) = t if ∆(x) = ({t}, Rt)

2. m(φη) = P
′ if ∆(η) = (P′, R′)

3. m(ψη) = R
′ if ∆(η) = (P′, R′)

satisfies the set of constraints Ξ1 ∪ Ξ2 ∪ {Φ1 = Φ2} ∪ {Ψ1 = Ψ2}, where ⊢ P1 :

Θ1; (Φ1,Ψ1); Ξ1 and ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2.

Proof. (⇐) Since ⊢ P1 : Θ1; (Φ1,Ψ1); Ξ1, ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2 and m satisfies

Ξ1 and Ξ2, applying Theorem 4.2 we derive m(Θ1) ⊢ P1 : (m(Φ1),m(Ψ1)), and

m(Θ2) ⊢ P2 : (m(Φ2),m(Ψ2)). From the definition of m, we have that m(Θ2) ⊆ ∆

and m(Θ2) ⊆ ∆, and by weakening we derive that ∆ ⊢ P1 : (m(Φ1),m(Ψ1))

and ∆ ⊢ P2 : (m(Φ2),m(Ψ2)). Moreover, from the fact that m satisfies {Φ1 =

Φ2} ∪ {Ψ1 = Ψ2}, we have that m(Φ1) = m(Φ2) = P and m(Ψ1) = m(Ψ2) = R.

Therefore, ∆ ⊢ P1 : (P, R) and ∆ ⊢ P2 : (P, R), and P1 7→ P2 is a ∆-safe rule.

(⇒) Since P1 7→ P2 is a ∆-safe rule, we have that ∆ ⊢ P1 : (P, R) and ∆ ⊢
P2 : (P, R). From Theorem 4.3, applied to ∆ ⊢ P1 : (P, R), we derive that ⊢
P1 : Θ1; (Φ1,Ψ1); Ξ1 and there is a type mapping m′ satisfying Ξ1 such that

∆ ⊇ m′(Θ1), P = m′(Φ1), R = m′(Ψ1). Applying Theorem 4.3 to ∆ ⊢ P2 : (P, R)

we derive that ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2 and there is a type mapping m′′ satisfying

Ξ2 such that ∆ ⊇ m′′(Θ2), P = m′′(Φ2), R = m′′(Ψ2). Since the basis m′(Θ1) and

m′′(Θ2) are both subsets of ∆, then, the mapping m defined by

m(µ) =

{
m′(µ) if µ ∈ dom(m′)

m′′(µ) if µ ∈ dom(m′′)

is well defined. Moreover, m satisfies Ξ1 ∪ Ξ2, and since m′(Φ1) = P = m′′(Φ2),

m′(Ψ1) = R = m′′(Ψ2), then m also satisfies {Φ1 = Φ2} ∪ {Ψ1 = Ψ2}.

Example 4.5. Using Lemma 4.4, we can see that the constraints making ∆-safe the

rule in Example 2.5 are

{ta} ∪ φex = {ta, tb} ∪ φex ψex \ ({tb} ∪ φex) = {tc} ∪ (ψex \ φY )

and the constraints in the sets Ξ1 and Ξ2 of Example 4.1.

To decide applicability of ∆-(P, R)-safe rules, we characterize the OK relation and

∆-(P, R)-safe rules.

Regarding the OK relation it is not necessary to consider the whole context, but

only the part of the context which influences the typing of the hole. The key observa-

tion is that the typing of a term inside two nested looping sequences does not depend

on the typing of the terms outside the outermost looping sequence. We call core of

the context the subterm of the context including the hole and the part of the context

affecting the type of the hole. The following definition formalises this notion.
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Definition 4.6. The core of the context C (notation core(C)) is defined by:

• core(C) = C if C ≡ � |T1 or C ≡ (S1)
L ⌋ (� |T1) |T2;

• core(C) = C2 if C = C1[C2] where C2 ≡ (S2)
L ⌋ ((S1)

L ⌋ (� |T1) |T2).

Remark that core is unambiguously defined, since every context can be split in an

unique way into one of the three shapes of the previous definition.

Lemma 4.7 (Characterization of OK Relation). Let the contextC be such that

⊢ C[T ] : (P0, ∅) for some T, P0. A type (P, R) is OK for C if and only if the type map-

ping m defined by

1. m(φX) = P,

2. m(ψX) = R,

satisfies the set of constraints

Ξ ∪ {Ψ = ∅ if φX or ψX occurs in Ψ},

where ⊢ core(C)[X ] : {X : (φX , ψX)}; (Φ,Ψ); Ξ.

Proof. (⇐) Lemma 3.2.(1) and ⊢ C[T ] : (P0, ∅) imply that all subterms of core(C)[X ]

are typable, i.e. that there are P1, R1, P
′
1, R

′
1, P2, R2, P

′
2, R

′
2 such that ⊢ T1 : (P1, R1),

⊢ S1 : (P′1, R
′
1), ⊢ T2 : (P2, R2), ⊢ S2 : (P′2, R

′
2) in the last case of the definition

of core(C)[X ], and suitable subsets of these typing judgements in the other two

cases.

By Definition 4.6 we have the following cases.

• C = core(C) and

– either core(C) = � |T1 and Φ = φX ∪ P1 and Ψ = ψX ∪ R1,

– or core(C) = (S1)
L ⌋ (� |T1) |T2 and Φ = P

′
1 ∪P2 and Ψ = (R′1 ∪R2) \ (φX ∪

P1).

Since m satisfies {Ψ = ∅ if φX or ψX occurs in Ψ}, then m(Ψ) = ∅. From

Theorem 4.2, since ⊢ core(C)[X ] : {X : (φX , ψX)}; (Φ,Ψ); Ξ and m satisfies

Ξ, we derive that X : (P, R) ⊢ core(C)[X ] : (m(Φ), ∅). Moreover, since C[X ] =

core(C)[X ], we have that X : (P, R) ⊢ C[X ] : (m(Φ), ∅). Therefore, the type

(P, R) is OK for the context C.

• core(C) = (S2)
L ⌋ ((S1)

L ⌋ (� |T1) |T2) and Φ = P
′
2 and Ψ = R

′
2 \ (P′1 ∪ P2).

From ⊢ C[T ] : (P0, ∅) by Lemma 3.2.(1) and .(2) we get X : (P′, R′) ⊢
core(C)[X ] : (P′′, R′′) for some P

′, R′, P′′, R′′. This implies by the Completeness

Theorem (Theorem 4.3) that there is a mapping m′ such that m′(P′2) = P
′′ and

m′(R′2\(P′1∪P2)) = R
′′. Since P′2 and R

′
2\(P′1∪P2) do not contain variables, we get

P
′
2 = P

′′ and R
′
2 \ (P′1 ∪ P2) = R

′′, independently from the types assumed for the

variable X . This implies by Lemma 3.2.(3) and .(2) X : (P, R) ⊢ C[X ] : (P0, ∅),
so we conclude that (P, R) is OK for the context C.

(⇒) By Definition 3.9, since (P, R) is OK for C, then X : (P, R) ⊢ C[X ] : (P′, ∅) for

some P′. Theorem 4.3 implies that ⊢ C[X ] : Θ′; (Φ′,Ψ′); Ξ′ and there is a type

mapping m that satisfies Ξ′ and such that {X : (P, R)} ⊇ m(Θ′), m(Φ′) = P,

m(Ψ′) = ∅. By definition Θ′ = {X : (φX , ψX)}, so we get m(φX) = P and
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m(ψX) = R. Being core(C)[X ] a subterm of C[X ] by Lemma 3.2.(1) we get

X : (P, R) ⊢ core(C)[X ] : (P′′, R′) for some P
′′, R′. Theorem 4.3 implies that

⊢ core(C)[X ] : {X : (φX , ψX)}; (Φ,Ψ); Ξ and by construction Ξ ⊆ Ξ′, so

m satisfies also Ξ. If core(C) = C, then Ψ = Ψ′, which implies m(Ψ) = ∅.
Otherwise neither φX nor ψX occurs in Ψ.

It is easy to check that if core(C) ≡ (S2)
L ⌋ ((S1)

L ⌋ (� |T1) |T2), and ⊢ T1 :

(P1, R1), ⊢ S1 : (P′1, R
′
1), ⊢ T2 : (P2, R2), ⊢ S2 : (P′2, R

′
2), then to prove that C is OK we

have to verify the following six constraints:

• (φX , ψX) ⊲⊳ (P1, R1)

• (P′1, R
′
1) ⊲⊳ ((φX , ψX) ⊔ (P1, R1))

• ((ψX ∪ R1) \ (φX ∪ P1)) ⊆ P
′
1

• (P′1, R
′
1 \ (φX ∪ P1)) ⊲⊳ (P2, R2)

• (P′2, R
′
2) ⊲⊳ ((P′1, R

′
1 \ (φX ∪ P1)) ⊔ (P2, R2))

• (((R′1 \ (φX ∪ P1)) ∪ R2) \ (P′1 ∪ P2)) ⊆ P
′
2.

The set of constraints is smaller when the core context has one of the simpler shapes.

Example 4.8. Using Lemma 4.7, the constraints making the type associated with

the p-type and r-type variable X OK for the contexts in Example 2.8 are:

(A) ({ta, tc}, ∅) ⊲⊳ (φX , ψX) ψX ⊆ {ta, tc}

(B) ({ta}, ∅) ⊲⊳ (φX , ψX) ψX ⊆ {ta}

(C) ({td}, ∅) ⊲⊳ (φX , ψX) ψX = ∅.

Lemma 4.9 (Characterization of ∆-(P, R)-safe rules). A rule P1 7→ P2 is ∆-

(P, R)-safe if and only if the type mapping m defined by

1. m(ϕx) = t if ∆(x) = ({t}, Rt),

2. m(φη) = P
′ if ∆(η) = (P′, R′),

3. m(ψη) = R
′ if ∆(η) = (P′, R′),

satisfies the set of constraints Ξ2 ∪ {Φ2 = P,Ψ2 = R}, where ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2.

Proof. (⇐) Let ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2 and m satisfies Ξ2 ∪ {Φ2 = P,Ψ2 = R}.
From Theorem 4.2 we derive that m(Θ) ⊢ P2 : (P, R). By definition of m we get

m(Θ2) = ∆. Therefore ∆ ⊢ P2 : (P, R), and P1 7→ P2 is a ∆-(P, R)-safe rule.

(⇒) Let P1 7→ P2 be a ∆-(P, R)-safe rule, then ∆ ⊢ P2 : (P, R). From Theorem 4.3,

we have that ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2, for some Θ2,Φ2,Ψ2,Ξ2, and there is a type

mapping m′ satisfying Ξ such that ∆ ⊇ m′(Θ2), P = m′(Φ2), and R = m′(Ψ2).

Therefore m′ satisfies Ξ2∪{Φ2 = P,Ψ2 = R}. From definition of m, we get m(Θ2) =

∆, and since ∆ ⊇ m′(Θ2), also m satisfies Ξ2 ∪ {Φ2 = P,Ψ2 = R}.

The previous lemmas imply the following theorem asserting the condition of applica-

bility of the rewrite rules.
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Theorem 4.10 (Applicability of rewrite rules). Let

⊢ P1 : Θ1; (Φ1,Ψ1); Ξ1 and ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2 and

⊢ core(C)[X ] : {X : (φX , ψX)}; (ΦC ,ΨC); ΞC and P1σ 6≡ ǫ.

Then the rule P1 7→ P2 can be applied to the term C[P1σ] such that ⊢ C[P1σ] : (P0, ∅)
(for some P0) if and only if the type mapping m defined by

1. m(ϕx) = t if σ(x) : t ∈ Γ,

2. m(φη) = P
′ if ⊢ σ(η) : (P′, R′),

3. m(ψη) = R
′ if ⊢ σ(η) : (P′, R′),

satisfies

(a) either the set of constraints Ξ1 ∪ Ξ2 ∪ {Φ1 = Φ2} ∪ {Ψ1 = Ψ2},

(b) or the set of constraints Ξ2∪ΞC∪{Φ2 = φX ,Ψ2 = ψX}∪{ΨC = ∅ | if φX or ψX occurs in ΨC}.

Proof. We define the basis ∆ as follows:

x : ({t}, Rt) ∈ ∆ if σ(x) : t ∈ Γ, and

η : (P′, R′) ∈ ∆ if ⊢ σ(η) : (P′, R′).

In this way we get that σ ∈ Σ∆ and the type mapping m is such that:

1. m(ϕx) = t iff x : ({t}, Rt) ∈ ∆

2. m(φη) = P
′ iff η : (P′, R′) ∈ ∆

3. m(ψη) = R
′ iff η : (P′, R′) ∈ ∆.

Let ℜ = P1 7→P2.

(⇐) If the mapping m satisfies the the set of constraints Ξ1∪Ξ2∪{Φ1 = Φ2}∪{Ψ1 =

Ψ2}, then by Lemma 4.4 the rule P1 7→ P2 is ∆-safe and we get C[P1σ] =⇒ C[P2σ]

by applying rule (ℜ-∆).

If the mapping m satisfies the the set of constraints Ξ2 ∪ ΞC ∪ {Φ2 = φX ,Ψ2 =

ψX} ∪ {ΨC = ∅ | if φX or ψX occurs in ΨC}, then by Lemma 4.7 the context

C is OK for (P, R) and by Lemma 4.9 the rule P1 7→ P2 is ∆-(P, R)-safe; we get

C[P1σ] =⇒ C[P2σ] by applying rule (ℜ-∆-(P, R)).

(⇒) If C[P1σ] =⇒ C[P2σ] by applying rule (ℜ-∆), then the rule P1 7→ P2 is ∆-

safe and then the mapping m satisfies the the set of constraints Ξ1 ∪ Ξ2 ∪ {Φ1 =

Φ2} ∪ {Ψ1 = Ψ2} by Lemma 4.4.

If C[P1σ] =⇒ C[P2σ] by applying rule (ℜ-∆-(P, R)), then the rule P1 7→ P2

is ∆-(P, R)-safe and the context C is Ok for (P, R), then the mapping m satis-

fies the the set of constraints Ξ2 ∪ ΞC ∪ {Φ2 = φX ,Ψ2 = ψX} ∪ {ΨC = ∅ |
if φX or ψX occurs in ΨC} by Lemmas 4.7 and 4.9.

The mapping m may be easily defined from the derivation of a type for P1σ, and

the checking that m satisfies a set of constraints requires only some substitutions.

Note that the sets of constraints for typing the left-hand-side and the right-hand-

side of ∆-safe rules, and the right-hand-side of ∆-(P, R)-safe rules, can be inferred once
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φex ψex φY ψY φX ψX

(1) tb, tc ta ∅ ∅ ta, tb, tc ∅

(2) tc ta ta, tb, tc ∅ ta, tb, tc ∅

(3) ∅ ∅ ta ∅ ta, tb tc

Fig. 6. Type mappings of Example 4.11

for all. Instead, the set of constraints for typing the core context of an application

of a ∆-(P, R)-safe rule has to be inferred when trying to apply the rule. However, as

previously remarked, this set of constraints includes at most six constraints.

Theorem 3.15 implies that, during inference, we can first check if the rule is ∆-

safe, using the constraints associated with the rule, and if this is not the case check

whether the rule is a ∆-(P, R)-safe rule (for some (P, R)), and if the type is OK for the

context. We can summarise the idea in the following algorithm, where ∆ is defined in

the proof of Theorem 4.10:

• In the initial phase, for every rule ℜ = P1 7→ P2 ∈ R, we infer ⊢ P1 :

Θ; (Φ1,Ψ1); Ξ1 and ⊢ P2 : Θ; (Φ2,Ψ2); Ξ2.

• When trying to reduce the well-typed term C[P1 σ] with ℜ = P1 7→ P2, we first

check whether the conditions of (ℜ-∆) hold, that is:

1. we check whether the type mapping m, defined by

m(ϕx) = t if σ(x) : t ∈ Γ,

m(φη) = P
′ if ⊢ σ(η) : (P′, R′),

m(ψη) = R
′ if ⊢ σ(η) : (P′, R′),

satisfies Ξ2: if not P2 σ is not well typed, and neither (ℜ-∆) nor (ℜ-∆-(P, R))

would be applicable (C[P1 σ] is not reducible via P1 7→ P2);

2. we check if m satisfies {Φ1 = Φ2} ∪ {Ψ1 = Ψ2}. If this is the case, the rule is

a ∆-safe rule, and then we can apply (ℜ-∆),

3. otherwise we check whether the conditions of (ℜ-∆-(P, R)) hold, where

P = m(Φ2) and R = m(Ψ2); in order to do this

(a) we infer ⊢ core(C)[X ] : {X : (φX , ψX)}; (ΦC ,ΨC); ΞC , and

(b) we check whether m satisfies

ΞC ∪ {Φ2 = φX ,Ψ2 = ψX} ∪ {ΨC = ∅ if φX or ψX occurs in ΨC}.

If this is the case, the context C is OK for (P, R), so we can use rule

(ℜ-∆-(P, R)), otherwise neither rule (ℜ-∆) nor (ℜ-∆-(P, R)) is applicable

(C[P1 σ] is not reducible via P1 7→ P2).

As we can see, the only check that the algorithm would not perform if we were to use

only rules (ℜ-∆-(P, R)), instead of both sets of rules, is the one in point 2. But the

fact that the rule is ∆-safe implies that we do not have to perform the checks that

follows (points 3.a and 3.b). In particular inferring the type for the context would be

not needed.
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Example 4.11. We use the algorithm described above on the terms of Example 3.14:

the constraints for ∆-safe rules and OK relations for the contexts are reported in

Examples 4.5 and 4.8, respectively. The type mappings derived from the instantiation

are reported in Fig. 6.

(1) The type mapping in line (1) of Fig. 6 satisfies

– the constraints in Ξ2 associated with P2 (see Example 4.1) and

– the constraints that make the rule a ∆-safe rule (see Example 4.5).

(2) The type mapping in line (2) of Fig. 6

– satisfies the constraints in Ξ2 associated with P2,

– does not satisfy the constraint {ta} ∪ φex = {ta, tb} ∪ φex that make the rule a

∆-safe rule (see Example 4.5) because

{ta, tc} 6= {ta, tb, tc}

– satisfies the set of constraints (B) for the context (see Example 4.8), since

(ta, ∅) ⊲⊳ ({ta, tb, tc}, ∅) ∅ ⊆ {ta}

(3) The type mapping in line (3) of Fig. 6

– satisfies the constraints in Ξ2 associated with P2,

– does not satisfy the constraint {ta} ∪ φex = {ta, tb} ∪ φex that make the rule a

∆-safe rule (see Example 4.5) because

{ta} 6= {tb, tc}

– does not satisfy the set of constraints (C) for the context (see Example 4.8),

since

({td}, ∅) ⊲⊳ ({ta, tb}, ∅) does not hold.

5 Example

A blood type is a classification of blood based on the presence or absence of inherited

antigenic substances on the surface of red blood cells: these antigens are the A antigen

and the B antigen. Blood type A contains only A antigens, blood type B contains

only B antigens, blood type AB contains both and the blood type O contains none of

them: this classification is called ABO blood type system.

The immune system will produce antibodies that can specifically bind to a blood

group antigen that is not recognized as self: individuals of blood type A have Anti-B

antibodies, individuals of blood type B have Anti-A antibodies, individuals of blood

type O have both Anti-A and Anti-B antibodies, and individuals of blood type AB

have none of them. These antibodies can bind to the antigens on the surface of the

transfused red blood cells, often leading to the destruction of the cell: for this reason,

it is vital that compatible blood is selected for transfusions.

Another antigen that refines the classification of blood types is the RhD antigen:

if this antigen is present, the blood type is called positive, else it is called negative.

Unlike the ABO blood classification, the RhD antigen is immunogenic, meaning that

a person who is RhD negative is very likely to produce Anti-RhD antibodies when
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Recipient Donor

O- O+ A- A+ B- B+ AB- AB+

O-
√

O+
√ √

A-
√ √

A+
√ √ √ √

B-
√ √

B+
√ √ √ √

AB-
√ √ √ √

AB+
√ √ √ √ √ √ √ √

Table 2. Red blood cell compatibility.

element basic type R set E set

c tc ∅ ∅
a ta tc ∅
b tb tc ∅
r tr tc ∅
ā tā tc ta

b̄ tb̄ tc tb

r̄ tr̄ tc tr

t tt ∅ ∅

Table 3. Elements, basic types, R and E sets for red blood cell compatibility.

exposed to the RhD antigen, but it is also common for RhD-negative individuals not

to have Anti-RhD antibodies. All these aspects led to the red blood cell compatibility

table in Table 2.

We want to study the possibility of blood transfusion in a system consisting of a

set of closed tissues. These tissues, containing blood cells and antibodies according to

the rules described above, can join each other and exemplify a transfusion of different

blood types. We model a red blood cell as a looping sequence containing the element

c on the surface and, depending on the blood type, the elements a, b and r as the A

antigen, the B antigen and the RhD antigen, respectively. We represent the antibodies

as the single elements ā, b̄ and r̄, modelling, respectively, the Anti-A, Anti-B and

Anti-RhD antibodies. Finally, we model a tissue (which can contains the red cells)

as a looping sequence having only the element t on the surface. To avoid undesirable

behaviours, using CLS without types, we must write as many rules as the different

combinations of the different blood types shown in Table 2. Using the typed extension

of CLS, according to the antigen and antibodies requirements and exclusions, we just

create the basic types shown in Table 3 and we can use the single rule

(t)
L ⌋X | (t)

L ⌋Y 7→ (t)
L ⌋ (X |Y )

to model tissues transfusion.

Let the system be a set of eight tissues, containing each possible recipient combi-

nation of blood with antibodies:
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(t)
L ⌋ ((c)

L ⌋ ǫ | ā | b̄ | r̄) |
(t)

L ⌋ ((c · a)L ⌋ ǫ | b̄ | r̄) | (t)
L ⌋ ((c · b)L ⌋ ǫ | ā | r̄) | (t)

L ⌋ ((c · r)L ⌋ ǫ | ā | b̄) |
(t)

L ⌋ ((c · a · b)L ⌋ ǫ | r̄) | (t)
L ⌋ ((c · a · r)L ⌋ ǫ | b̄) | (t)

L ⌋ ((c · b · r)L ⌋ ǫ | ā | r̄) |
(t)

L ⌋ ((c · a · b · r)L ⌋ ǫ).

They cannot react with each other, because the antibodies of the ones exclude the

antigens of the others. If in the system arrives a donor, as a tissue without antibodies,

having blood type O-:

(t)
L ⌋ ((c)

L ⌋ ǫ),
it can singularly react with each tissue, because it does not have antigens, whereas if

in the system arrives a donor having blood type O+:

(t)L ⌋ ((c · r)L ⌋ ǫ),
it can singularly react with the tissues that do not contain the Anti-RhD antibody r̄.

As further example, if in the system arrives a donor having blood type A+:

(t)
L ⌋ ((c · a · r)L ⌋ ǫ),

it can singularly react with each tissue that does not contain Anti-RhD and Anti-A

antibodies r̄ and ā, so tissues containing A+ and AB+ blood types.

6 Conclusions

The most common approach of biologists to describe biological systems is based on

the use of deterministic mathematical means (like, e.g., ODE), and makes it possible

to abstractly reason on the behaviour of biological systems and to perform a quan-

titative in silico investigation. This kind of modelling, however, becomes more and

more difficult, both in the specification phase and in the analysis processes, when

the complexity of the biological systems taken into consideration increases. This has

probably been one of the main motivations for the application of Computer Science

formalisms to the description of biological systems [19].

In this paper we introduced a type system for CLS and used it to define a typed

semantics in which the applicability of rules is determined by type conditions on the

applied rules and on the context of application. We defined a type inference system

and an algorithm to perform reductions.

As seen in Section 5, the use of a typed semantic for CLS permits to transfer the

complexity of biological properties from rules to types, and so to study the behaviour

of the systems using only simple and general rules: we focused on disciplines deriving

by the requirement/exclusion of certain elements, even if in nature it is not easy to

find elements which completely exclude or require other elements. Our abstraction,

however, allows us to deal with a simple qualitative model, and to observe some

basic properties of biological systems. A more detailed analysis could also deal with

quantities. In this case, typing is useful in modelling quantitative aspects of CLS

semantics on the line of [5]. In particular, in [12], we show a simple example on how

types could be used to model repellency also by quantitative means, that is slowing

down undesired interactions.

As a future work, we plan to investigate type disciplines assuring different prop-

erties for CLS and to apply this approach to other calculi for describing evolution of

biological systems, in particular to P-systems [17].

In nature, request and repellency could be seen as practical suggestions, that if

not followed could drive to undesirable behaviour, such as, like in our blood trans-



Type Directed Semantics for CLS 25

fusion example, the death of the system. In practice, one could not generally forbid

terms having requests or repellency collisions: even if it is not desirable, one could

accidentally transfuse incompatible blood types. On the contrary, our typed semantics

completely exclude these kinds of situations. According to this idea, we can modify

our typed semantics, allowing transitions which lead to untypable terms, but sig-

nalling that some errors, or some undesired states, as been reached. For example,

we could modify the transitions driven by ∆-safe rules behaviour and ∆-(P, R)-safe

rules behaviour, with the following two rules that raise an error when some undesired

reduction is performed:

P1 7→ P2 ∈ R is not a ∆-(P, R)-safe rule P1σ 6≡ ǫ

σ ∈ Σ∆ C ∈ C

C[P1σ]
typabilityError
−−−−−−−−−−→ C[P2σ]

P1 7→ P2 ∈ R is a ∆-(P, R)-safe rule P1σ 6≡ ǫ

σ ∈ Σ∆ C ∈ C (P, R) is not OK for C

C[P1σ]
contextError
−−−−−−−−−→ C[P2σ]

and modifying the algorithm in Section 4, raising an error in point 3.b. In this way

the modeller knows that some unwanted behaviour is happening in the system and

readjust it to avoid the undesired situations.

As highlighted from the previous considerations, the notion that a given element

repels another is not fixed and immutable, but could arise, in an evolutionary way,

from the failure of some rules. That is, instead of fixing the sets of required and

excluded elements once and for all, in our reductions we could have sets that get

modified by the (failure or success) of rule applications. The new sets could be used

later on to influence the reductions of the system.
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