
MeCBIC 2008

Type Disciplines for Analysing Biologically
Relevant Properties

Bogdan Aman

Institute of Computer Science, Romanian Academy Blvd. Carol I no.8,
700505 Iaşi, Romania baman@iit.tuiasi.ro

“A.I.Cuza” University of Iaşi, Faculty of Computer Science Blvd. Carol I no.11,
700506 Iaşi, Romania

Mariangiola Dezani-Ciancaglini Angelo Troina

Dipartimento di Informatica, Università di Torino corso Svizzera 185,
10149 Torino, Italia {dezani,troina}@di.unito.it

Abstract

The calculus of looping sequences is a formalism for describing evolution of biolog-
ical systems by means of term rewriting rules. We propose to enrich this calculus
with type disciplines to guarantee the soundness of reduction rules with respect to
interesting biological properties.

1 Introduction

Biologists usually describe biological systems by mathematical means, such
as differential equations. This allows them to reason on the behaviour of the
described systems and to perform simulations. Mathematical modelling be-
comes more difficult both in specification and in analysis when the complexity
of the system increases. This is one of the main motivations for the applica-
tion of Computer Science formalisms to the description of biological systems
[13]. Another motivation is that the use of formal means of Computer Science
permits the application of analysis methods that are practically unknown to
biologists, such as model checking.

Among the formalisms that either have been applied to or have been in-
spired by biological systems there are automata-based models [1,9], rewrite
systems [7,11], and process calculi [13,14,12,6]. Automata have the advantage
of allowing the direct use of many verification tools such as model checkers.
Rewrite systems usually allow describing biological systems with a notation
that can be easily understood by biologists. On the other hand, automata-like

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Aman, Dezani-Ciancaglini, Troina

models and rewrite systems present, in general, problems from the point of
view of compositionality. Compositionality allows studying the behaviour of a
system componentwise, and is in general ensured by process calculi, included
those commonly used to describe biological systems.

Milazzo et al. in [3,4,10] developed a new formalism, called Calculus of
Looping Sequences (CLS for short), for describing biological systems and their
evolution. CLS is based on term rewriting with some features, such as a
commutative parallel composition operator, and some semantic means, such
as bisimulations [4,5], which are common in process calculi. This permits to
combine the simplicity of notation of rewrite systems with the advantage of a
form of compositionality.

In this paper we enrich CLS with two type disciplines which allow to guar-
antee the soundness of reduction rules with respect to some relevant properties
of biological systems. The key technical tools we use are type inference and
principal typing [15], i.e. we associate to each reduction rule the minimal set
of conditions an instantiation must satisfy in order to assure that applying
this rule to a “correct” system we get a “correct” system as well.

To the best of our knowledge [2] is the only paper which studies a type
discipline for CLS. We generalise that proposal getting in this way typability
of more reduction rules.

1.1 Summary

The remainder of this paper is organised as follows: Section 2 introduces the
CSL, while in Section 3 we describe two type disciplines for CSL. Section
4 contains two biological examples motivating the type disciplines. Some
concluding remarks end the paper.

2 The Calculus of Looping Sequences

In this section we recall the linked Calculus of Looping Sequences (here, we
simply call it CLS) [2]. It is based on term rewriting, and hence a CLS model
consists of a term and a set of rewrite rules. The term represents the structure
of the modelled system, and the rewrite rules represent the events that may
cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite
alphabet E of symbols ranged over by a, b, c, . . . and a set of names N ranged
over by m,n,

Definition 2.1 [Terms] Terms T and Sequences S of CLS are given by the
grammars:

T ::= S
∣∣ (S)L ⌋T

∣∣ T | T

S ::= ǫ
∣∣ a

∣∣ an
∣∣ S ·S

2

Aman, Dezani-Ciancaglini, Troina

where a is any element of E , n is a name in N and ǫ is the empty sequence.
We denote the infinite sets of terms and sequences with T and S, respectively.

In CLS we have a sequencing operator · , a looping operator ()L, a parallel
composition operator | , and a containment operator ⌋ . Sequencing can
be used to concatenate elements of the alphabet E . The empty sequence ǫ
denotes the concatenation of zero symbols. A term can be either a sequence,
or a looping sequence (that is the application of the looping operator to a
sequence) containing another term, or the parallel composition of two terms.
By the definition of terms, we have that looping and containment are always
applied together, hence we can consider them as a single binary operator
()L ⌋ that applies to one sequence and one term.

The biological interpretation of the operators is the following: the main
entities which occur in cells are DNA and RNA strands, proteins, membranes,
and other macro-molecules. DNA strands (and similarly RNA strands) are
sequences of nucleic acids, but they can be seen also at a higher level of
abstraction as sequences of genes. Proteins are sequences of amino acids which
usually have a very complex three-dimensional structure. In a protein there are
usually (relatively) few subsequences, called domains, which actually are able
to interact with other entities by means of chemical reactions. CLS sequences
can model DNA/RNA strands and proteins by describing each gene or each
domain with a symbol of the alphabet. The binding between two domains of
two different proteins, that is the linking between two elements of two different
sequences, is modelled by labelling the two symbols representing the domains
with the same name. When a term represents only a part of the system we
are modelling, there might be some name appearing only once. In this case,
the symbols labelled with these names are linked to other symbols in other
parts of the term representing the full model. Membranes are closed surfaces
often interspersed with proteins, and may have a content. A closed surface
can be modelled by a looping sequence. The elements (or the subsequences) of
the looping sequence may represent the proteins on the membrane, and by the
containment operator it is possible to specify what the membrane contains. As
membranes create compartments, elements inside a looping sequences cannot
be linked to elements outside. Thus, elements inside a membrane can be linked
either to other elements which are also inside the membrane or to elements
of the membrane itself. Other macro-molecules can be modelled as single
alphabet symbols, or as sequences of their components. An element can be
linked at most to another element. Note, however, that a domain able to
bind with multiple partners simultaneously could be encoded by using more
elements with a single binding site. Finally, juxtaposition of entities can be
described by the parallel composition operator of their representations.

In CLS we may have syntactically different terms representing the same
structure. Names are only labels for binding and so we consider terms mod-
ulo α-renaming of names (denoted by ≡α). We introduce also a structural
equivalence relation.

3

Aman, Dezani-Ciancaglini, Troina

c

a n

b
c

a n

b

a n

a n

c

b

c

d

e

aa

a n

a n

e e

c

c

d c

e

Fig. 1. Examples of CLS terms.

Definition 2.2 [Structural equivalence] The structural equivalence relation
≡ is the least equivalence relation on terms such that:

(i) is a congruence with respect to the operators · , | , and ()L ⌋ ;

(ii) · is associative;

(iii) | is commutative and associative;

(iv) ǫ is the neutral element of · , | , and (ǫ)L ⌋ ǫ ≡ ǫ;

(v) looping sequences can rotate, i.e. (S1 ·S2)
L ⌋T ≡ (S2 ·S1)

L ⌋T .

Example 2.3 In Figure 1 we depict some terms of the calculus illustrating the
syntax of CLS. Sequences are depicted as lines, and their elements are of the
same color of the line, circular lines represent looping sequences, while dotted
lines depict the bindings. The first term a

n ·c·b·an ·c represents a sequence of
elements (e.g., a sequence of the domains of a protein) in which two a elements
are bound through the label n (e.g., two domains of the protein are bound to
form a more complex structure). The second term (c·b·an·b·c·an)L ⌋ (d | e)
represents a looping sequence (a membrane) containing elements d and e where
the binding of two a elements may cause the membrane to divide. The last
term (c·a·c·an·c·a)L ⌋ ((e·an ·e)L ⌋ d | e) represents a bubble which joins the
membrane containing it with the binding on two a elements and prepares for
endocytosis.

Rewrite rules are defined essentially as pairs of terms, in which the first
term describes the portion of the system in which the event modelled by the
rule may occur, and the second term describes how that portion of the system
changes when the event occurs. In the terms of a rewrite rule we allow the
use of variables. As a consequence, a rule will be applicable to all terms which
can be obtained by properly instantiating its variables. Variables can be of
three kinds: two are associated with the two different syntactic categories of
terms and sequences, and one is associated with single alphabet elements. We
assume a set of term variables TV ranged over by X, Y, Z, . . ., a set of sequence
variables SV ranged over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged
over by x, y, z, All these sets are pairwise disjoint and possibly infinite.
We denote by V the set of all variables TV ∪SV ∪X , and with ρ any variable
in V. A pattern is a term which may include variables.

4

Aman, Dezani-Ciancaglini, Troina

Definition 2.4 [Patterns] Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
∣∣ (SP)L ⌋P

∣∣ P |P
∣∣ X

SP ::= ǫ
∣∣ a

∣∣ an
∣∣ SP ·SP

∣∣ x̃
∣∣ x

∣∣ xn

where a is an element of E , n is a name in N and X, x̃ and x are elements of
TV, SV and X , respectively. We denote with P the infinite set of patterns.

We assume the α-equivalence and the structural equivalence relations to
be extended to patterns. An instantiation is a partial function σ : V → T . An
instantiation must preserve the kind of variables, thus for X ∈ TV , x̃ ∈ SV

and x ∈ X we have σ(X) ∈ T , σ(x̃) ∈ S, and σ(x) ∈ E , respectively. Given
P ∈ P, with Pσ we denote the term obtained by replacing each occurrence of
each variable ρ ∈ V appearing in P with the corresponding term σ(ρ). With
Σ we denote the set of all the possible instantiations, and, given P ∈ P, with
V ar(P) we denote the set of variables appearing in P .

We can now define rewrite rules.

Definition 2.5 [Rewrite Rules] A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→ P2, where P1, P2 ∈ P, P1 6≡ ǫ and such that V ar(P2) ⊆
V ar(P1).

A rewrite rule P1 7→P2 states that a term P1σ, obtained by instantiating
variables in P1 by some instantiation function σ, can be transformed into the
term P2σ. We define the semantics of CLS as a transition system, in which
states correspond to terms, and transitions correspond to rule applications.

The semantics of CLS is defined by resorting to the notion of contexts.

Definition 2.6 [Contexts] Contexts C are defined as:

C ::= �
∣∣ C | T

∣∣ T |C
∣∣ (S)L ⌋C

where T ∈ T and S ∈ S. The context � is called the empty context. We
denote with C the infinite set of contexts.

By definition, every context contains a single hole �. Let us assume C,C ′ ∈
C. With C[T] we denote the term obtained by replacing � with T in C; with
C[C ′] we denote context composition, whose result is the context obtained by
replacing � with C ′ in C. The α-equivalence and the structural equivalence
can be easily extended to contexts, namely C ≡α C ′ if C[ǫ] ≡α C ′[ǫ], and
similarly for ≡.

Rewrite rules can be applied to terms only if they occur in a legal context.
Note that the general form of rewrite rules does not permit to have sequences
as contexts. A rewrite rule introducing a parallel composition on the right
hand side (as a 7→ b | c) applied to an element of a sequence (e.g., m ·a ·m)
would result into a syntactically incorrect term (in this case m · (b | c) ·m). To

5

Aman, Dezani-Ciancaglini, Troina

modify a sequence, a pattern representing the whole sequence must appear in
the rule. For example, rule a·x̃ 7→ a | x̃ can be applied to any sequence starting
with element a, and, hence, the term a ·b can be rewritten as a | b, and the
term a·b·c can be rewritten as a | b·c.

The semantics of CLS is defined as follows. We denote by O(T), T (T)
the set of names which occur once or twice in T , respectively. We define
O(C) = O(C[ǫ]) and T (C) = T (C[ǫ]).

Definition 2.7 [Semantics] Given a finite set of rewrite rules R, the seman-
tics of CLS is the least relation closed with respect to ≡ and satisfying the
following inference rule:

P1 7→ P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ C ∈ C

C ′ ≡α C T ≡α P2σ O(C ′) ∩ T (T) = T (C ′) ∩ O(T) = T (C ′) ∩ T (T) = ∅

C[P1σ] −→ C ′[T]

α-renaming is used to avoid name clashes, since it is easy to verify that for any
C, P2, σ there are C ′, T such that C ′ ≡α C, T ≡α P2σ, and O(C ′) ∩ T (T) =
T (C ′)∩O(T) = T (C ′)∩T (T) = ∅. As usual we denote with −→∗ the reflexive
and transitive closure of −→.

Given a set of rewrite rules R, the behaviour of a term T is the tree of
terms to which T may reduce.

3 Type Disciplines

3.1 A Type Discipline for Safe Bindings

The use of links may cause some problems. Consider for example the two
terms an | bn | cn and an | (b·c)L ⌋ dn. In the first one, the same name n is used
to label more than two elements; in the second term a name is used to link
an element outside a membrane and an element inside it. To avoid this kind
of situations, a notion of well-formed terms is introduced in [2] stating that
a term is well formed if and only if a labelling name occurs no more than
twice within the term, and that two occurrences of a label are always within
the same compartment. A type discipline for checking the well formedness
of terms and patterns is proposed in [2]. Here we propose a generalisation of
that type discipline in two respects:

• we classify elements with basic types and we assure that only elements of
the same basic types are linked;

• we relax the restrictions on the shapes of the rewrite rules and of the in-
stantiations.

To this aim we require atomic elements in E to be of some basic type t.
Intuitively, given a molecule represented by an element in E , we associate to
it a type t which specifies the kind of the molecule and the kind of bindings
the molecule can create. We assume a fixed typing Γ0 for the elements in E .

6

Aman, Dezani-Ciancaglini, Troina

Γ ⊢ ǫ : (∅, ∅) (ǫ)
a : t ∈ Γ0

(a)
Γ ⊢ a : (∅, ∅)

a : t ∈ Γ0

(an)
Γ ⊢ an : (∅, {a : t})

Γ, x : t ⊢ x : (∅, ∅) (x) Γ, x : t ⊢ xn : (∅, {a : t}) (xn) Γ, η : (N, L) ⊢ η : (N, L) (η)

Γ ⊢ SP : (N, L) Γ ⊢ SP ′ : (N′, L′) N ∩ N
′ = N ∩ dom(L′) = N

′ ∩ dom(L) = ∅ L ⊲⊳ L′

(seq)
Γ ⊢ SP ·SP ′ : (N ∪ N

′ ∪ (dom(L) ∩ dom(L′)), L ⊎ L
′)

Γ ⊢ P : (N, L) Γ ⊢ P ′ : (N′, L′) N ∩ N
′ = N ∩ dom(L′) = N

′ ∩ dom(L) = ∅ L ⊲⊳ L′

(parcomp)
Γ ⊢ P |P ′ : (N ∪ N

′ ∪ (dom(L) ∩ dom(L′)), L ⊎ L
′)

Γ ⊢ SP : (N, L) Γ ⊢ P : (N′, L′) N ∩ N
′ = N ∩ dom(L′) = N

′ ∩ dom(L) = ∅ L
′ ⊆ L

(loop)
Γ ⊢ (SP)

L ⌋P : (N ∪ dom(L′), L \ L′)

Fig. 2. Typing rules for safe bindings

We use η ∈ SV ∪ TV to denote either sequence or term variables. With N

we denote a finite set of untyped names:
N ::= ∅

∣∣ N, n

while with L we denote a finite set of typed names:
L ::= ∅

∣∣ L, n : t

Intuitively, give a pattern P , we can associate to P a set of names N which
contains all the names used to create closed point to point bindings. A pattern
may however also contain some names which do not bind another molecule in
P but may bind somewhere else in the environment. Thus, we may associate
to a pattern P a set L of typed names. We do not need to keep track of types
for closed link, but, for open links, we should guarantee that a molecule of
some type is bound, somewhere else in the environment, with a molecule of
the same type. To sum up we associate to a pattern a pair type of the shape
(N, L). We associate pair types also to sequences.

We define the domain of a set of typed names L as
dom(L) = {n | n : t ∈ L}.

We say that two typed set of names L and L
′ are compatible (written L ⊲⊳ L′)

if and only if whenever n : t ∈ L and n : t′ ∈ L
′, then it holds t = t

′. The
disjoint union of L and L

′ is defined as
L ⊎ L

′ = {n : t ∈ L ∧ n 6∈ dom(L′)} ∪ {n : t′ ∈ L
′ ∧ n 6∈ dom(L)}.

With the following grammar we define basis Γ, which maps element vari-
ables to basic types, and maps sequence and term variables to pair types:

Γ ::= ∅
∣∣ Γ, ν : t

∣∣ Γ, η : (N, L)

The type discipline to check safe bindings, namely, to avoid not well-formed
bindings, is defined by the typing rules in Figure 2.

Rules (ǫ)-(a)-(x): any basis types with N and L empty sets, the term ǫ and
any elementary object without binding labels. Rules (an)-(xn): an elementary

7

Aman, Dezani-Ciancaglini, Troina

object with a binding label n gets typed with N empty (there are no labels
defining a closed link) and with L = {n : t} (there is an open link represented
by label n of type t). Rule (η): complex sequences and terms may contain
both closed links and open links.

Rule (seq): when putting two sequences together, the names representing
the closed links should not appear in any other binding. Open links in the two
sequences to be join can form a closed link if they have the same label (since
we require compatibility between L and L

′, the labels closing each open link are
of the same type). In the resulting sequences, the labels which got closed are
removed form L and L

′ and added to the final set of labels representing closed
links. Rule (parcomp): similarly as what happens for Rule (seq), putting two
patterns in parallel may allow to close some of the links which are open in the
the two patterns in isolation.

Rule (loop): we can put a pattern P inside a looping sequence SP only
when all the open links of P are closed. This is because if P gets inside a
compartment (represented by the looping sequence) it cannot interact any
more with the environment. Thus, if P has some open link, it should be
bound with equal open links present on the looping sequence SP , which now
represents the only environment surrounding P . For this to be done, we
require that the set of open links of P is a subset of the set of open links of
SP (all the open links in P can be closed by SP).

Rewrite rules may modify the status of the bindings by creating new closed
links or destroying some of them. We require, however, that rewrite rules do
not change the status of open bindings, which are assumed to be closed by
the environment and represent only a partial state of the system.

Definition 3.1 [Γ-Safe Rules] A rewrite rule P 7→ P ′ is Γ-safe (notation
P 7→ P ′ ∈ RΓ) if Γ ⊢ P : (N, L) and Γ ⊢ P ′ : (N′, L) for some N, N′, L.

An instantiation σ agrees with a basis Γ (notation σ ∈ ΣΓ) if x : t ∈ Γ
implies σ(x) : t ∈ Γ and η : (N′, L) ∈ Γ implies Γ ⊢ σ(η) : (N, L). We can safely
apply a Γ-safe rule to a term only if the involved instatiation agrees with Γ.

In this case we denote by
Γ
−→ the so obtained reduction. More formally:

Definition 3.2 [Γ-Typed Semantics] Given a finite set of rewrite rules R, the
Γ-typed semantics of CLS is the least relation closed with respect to ≡ and
satisfying the following inference rule:

P1 7→ P2 ∈ RΓ P1σ 6≡ ǫ σ ∈ ΣΓ C ∈ C

C ′ ≡α C T ≡α P2σ O(C ′) ∩ T (T) = T (C ′) ∩ O(T) = T (C ′) ∩ T (T) = ∅

C[P1σ]
Γ
−→ C ′[T]

As expected
Γ
−→ reduction preserves typing under the basis Γ.

Theorem 3.3 If Γ ⊢ T : (N, L) and T
Γ
−→ T ′, then Γ ⊢ T ′ : (N′, L) for some N

′.

8

Aman, Dezani-Ciancaglini, Troina

⊢ ǫ : ∅; (∅, ∅); ∅
a : t ∈ Γ0

⊢ a : ∅; (∅, ∅); ∅

a : t ∈ Γ0

⊢ an : ∅; (∅, {n : t}); ∅

⊢ x : {x : ϕx}; (∅, ∅); ∅ ⊢ xn : {x : ϕx}; (∅, {n : ϕx}); ∅

⊢ η : {η : (φη, ψη)}; (φη, ψη); ∅

⊢ SP : Θ; (Φ,Ψ); Ξ ⊢ SP ′ : Θ′; (Φ′,Ψ′); Ξ′

⊢ SP ·SP ′ : Θ ∪ Θ′; (Φ ∪ Φ′ ∪ (dom(Ψ) ∩ dom(Ψ′)),Ψ ⊎ Ψ′); Ξ′′

where Ξ′′ = Ξ ∪ Ξ′∪(Φ ∩ Φ′ = Φ ∩ dom(Ψ′) = Φ′ ∩ dom(Ψ) = ∅) ∪ (Ψ ⊲⊳ Ψ′)

⊢ P : Θ; (Φ,Ψ); Ξ ⊢ P ′ : Θ′; (Φ′,Ψ′); Ξ′

⊢ P | P ′ : Θ ∪ Θ′; (Φ ∪ Φ′ ∪ (dom(Ψ) ∩ dom(Ψ′)),Ψ ⊎ Ψ′); Ξ′′

where Ξ′′ = Ξ ∪ Ξ′ ∪ (Φ ∩ Φ′ = Φ ∩ dom(Ψ′) = Φ′ ∩ dom(Ψ) = ∅) ∪ (Ψ ⊲⊳ Ψ′)

⊢ SP : Θ; (Φ,Ψ); Ξ ⊢ P : Θ′; (Φ′,Ψ′); Ξ′

⊢ (SP)L ⌋P : Θ ∪ Θ′; (Φ ∪ dom(Ψ′),Ψ \ Ψ′); Ξ′′

where Ξ′′ = Ξ ∪ Ξ′ ∪ (Φ ∩ Φ′ = Φ ∩ dom(Ψ′) = Φ′ ∩ dom(Ψ) = ∅) ∪ (Ψ′ ⊆ Ψ)

Fig. 3. Inference Rules for Principal Typing

Note that we generalised the typability of [2]. For example let Γ = {a :

t, b : t, x̃ : (∅, {1 : t})}, σ(x̃) = b1, a1 | x̃ 7→ a1 | a1: we get a1 | b1
Γ
−→ a1 | a1 and

this example cannot be dealt with the type discipline of [2].

In order to infer which rewriting rules are Γ-safe the machinery of princi-
pal typing [15] is handy. We convene that for each variable x ∈ X there is an
e-type variable ϕx ranging over basic types, and for each variable η ∈ SV ∪TV
there are two variables φη, ψη (called u-type variable and t-type variable) rang-
ing over sets of untyped and typed names, respectively. Moreover we convene
that Φ ranges over unions of sets of untyped names and u-type variables, and
Ψ ranges over unions of sets of typed names and t-type variables.
A basis scheme Θ is a map from atomic variables to their e-types, and from
sequence and term variables to pairs of their u-type variables and t-type vari-
ables:

Θ ::= ∅
∣∣ Θ, x : ϕx

∣∣ Θ, η : (φη, ψη)

The rules for inferring principal typing use judgements of the shape:
⊢ P : Θ; (Φ,Ψ); Ξ ⊢ SP : Θ; (Φ,Ψ); Ξ

where Θ is the principal basis in which P (SP) is well formed, (Φ,Ψ) is the
principal type of P (SP), and Ξ is the set of conditions which should be
satisfied when building up P (SP). Figure 3 gives these inference rules.

Soundness and completeness of our inference rules can be stated as usual.
A type mapping maps e-type variables to basic types, u-type variables to sets
of names and t-type variables to sets of typed names. A type mapping m

satisfies a set of constraints Ξ if all constraints in m(Ξ) hold true.

Theorem 3.4 (Soundness of Type Inference) (i) If ⊢ SP : Θ; (Φ,Ψ); Ξ

9

Aman, Dezani-Ciancaglini, Troina

and m is a type mapping which satisfies Ξ, then m(Θ) ⊢ SP : (m(Φ),m(Ψ)).

(ii) If ⊢ P : Θ; (Φ,Ψ); Ξ and m is a type mapping which satisfies Ξ, then
m(Θ) ⊢ P : (m(Φ),m(Ψ)).

Theorem 3.5 (Completeness of Type Inference) (i) If ⊢ SP : Θ; (Φ,Ψ); Ξ
and Γ ⊢ SP : (N, L), then there is a type mapping m that satisfies Ξ and
such that Γ ⊇ m(Θ), N = m(Φ), L = m(Ψ).

(ii) If ⊢ P : Θ; (Φ,Ψ); Ξ and Γ ⊢ P : (N, L), then there is a type mapping m

that satisfies Ξ and such that Γ ⊇ m(Θ), N = m(Φ), L = m(Ψ).

We conclude this subsection by putting our inference rules at work in order
to assure safety of reduction rules.

Each rewrite rule induces a set of constraints Ξ which takes into account
the principal typing of the l.h.s. and of the r.h.s. of the rule and the notion of
safety of a rule with respect to a given basis (Definition 3.1). This is formalised
in the following definition.

Definition 3.6 [Ξ-SuperSafe Rules] A rewrite rule P 7→ P ′ is Ξ-SuperSafe
(notation P 7→ P ′ ∈ RΞ) if ⊢ P : Θ′; (Φ,Ψ); Ξ′ , ⊢ P ′ : Θ′′; (Φ′,Ψ′); Ξ′′,
and Ξ = {Ψ = Ψ′} ∪ Ξ′ ∪ Ξ′′ ∪ {τ = τ ′|λ : τ ∈ Θ&λ : τ ′ ∈ Θ′} for some
Θ,Φ,Ψ,Ξ′,Θ′,Φ′,Ψ′,Ξ′′.

We can show that SuperSafety exactly captures the notion of safety via
type mappings which agree with the current set of constraints.

Theorem 3.7 (Soundness and Completeness of Ξ-SuperSafety) If m is
a type mapping we define Γm = {x : m(ϕx)} ∪ {η : (m(φη),m(ψη))}.

(i) If P 7→ P ′ ∈ RΞ and m is a type mapping that satisfies Ξ, then P 7→
P ′ ∈ RΓm

.

(ii) If P 7→ P ′ ∈ RΞ and P 7→ P ′ ∈ RΓ, then there is a type mapping m that
satisfies Ξ and such that Γ ⊇ Γm.

Similarly to what we did for safety of rules with SuperSafety we need to
generalise the agreement of instantion. An instantiation σ superAgrees with
Ξ (notation σ ∈ ΣΞ) if there is a type mapping m that satisfies Ξ and such
that σ ∈ ΣΓm

. Given Ξ, σ we can build an m which makes σ superAgree with
Ξ (whenever it exists) as follows:

(i) if σ(x) : t ∈ Γ0 then m(ϕx) = N;

(ii) if ⊢ σ(η) : (N, L) then m(φη) = N and m(ψη) = L.

It is easy to verify that σ ∈ ΣΞ if m(Ξ) holds for such an m.

We can give then our last formulation of the reduction rules, which allows
us to check their safety, as stated in the following theorem.

Definition 3.8 [Ξ-Typed Semantics] Given a finite set of rewrite rules R, the
Ξ-typed semantics of CLS is the least relation closed with respect to ≡ and
satisfying the following inference rule:

10

Aman, Dezani-Ciancaglini, Troina

P1 7→ P2 ∈ RΞ P1σ 6≡ ǫ σ ∈ ΣΞ C ∈ C

C ′ ≡α C T ≡α P2σ O(C ′) ∩ T (T) = T (C ′) ∩ O(T) = T (C ′) ∩ T (T) = ∅

C[P1σ]
Ξ
−→ C ′[T]

Theorem 3.9 (Soundness and Completeness of the Ξ-Typed Semantics)

(i) If T
Ξ
−→ T ′ and m is a type mapping that satisfies Ξ, then T

Γm−→ T ′.

(ii) If T
Ξ
−→ T ′ and T

Γ
−→ T ′, then there is a type mapping m that satisfies Ξ

and such that Γ ⊇ Γm.

We can also use type disciplines in order to prescribe that reduction rules
can be applied only if some typing conditions are satisfied. This is exemplified
in Subsection 4.3 for the type discipline of Subsection 3.2.

3.2 A Type Discipline for Present/Required/Excluded Elements

In this subsection we consider terms, sequences and patterns without names,
since we are interested in properties orthogonal to names. We use t to de-
note a basic type, and P,R,E to denote sets of basic types. We consider only
local properties: elements influence each other if they are either in the same
compartment or they contain each other.

Types are triples of sets of basic types (P, R, E): the set P of present ele-
ments, the set R of required elements, and the set E of excluded elements. A
type (P, R, E) is well formed if P ∩ R = P ∩ E = R ∩ E = ∅.
Basis are defined by:

∆ ::= ∅
∣∣ ∆, x : ({t}, R, E)

∣∣ ∆, η : (P, R, E)

∆ ⊢ ǫ : (∅, ∅, ∅)
a : ({t}, R, E) ∈ Γ0

∆ ⊢ a : ({t}, R, E)

∆, x : ({t}, R, E) ⊢ x : ({t}, R, E) ∆, η : (P, R, E) ⊢ η : (P, R, E)

∆ ⊢ SP : (P, R, E) ∆ ⊢ SP ′ : (P′, R′, E′) P ∩ E
′ = P

′ ∩ E = R ∩ E
′ = R

′ ∩ E = ∅

∆ ⊢ SP ·SP ′ : (P ∪ P
′, (R ∪ R

′) \ (P ∪ P
′), E ∪ E

′)

∆ ⊢ P : (P, R, E) ∆ ⊢ P ′ : (P′, R′, E′) P ∩ E
′ = P

′ ∩ E = R ∩ E
′ = R

′ ∩ E = ∅

∆ ⊢ P |P ′ : (P ∪ P
′, (R ∪ R

′) \ (P ∪ P
′), E ∪ E

′)

∆ ⊢ SP : (P, R, E) ∆ ⊢ P : (P′, R′, E′) P ∩ E
′ = P

′ ∩ E = R ∩ E
′ = R

′ \ P = ∅

∆ ⊢ (SP)L ⌋P : (P, R \ P′, E)

Fig. 4. Typing rules for Present/Required/Excluded Elements

11

Aman, Dezani-Ciancaglini, Troina

With abuse of notation, we say (P, R, E) ∈ ∆ when x : ({t}, R, E) ∈ ∆ or
η : (P, R, E) ∈ ∆. A basis ∆ is well formed if:

• (P, R, E) ∈ ∆ =⇒ (P, R, E) is well formed;

• (P, R, E) ∈ ∆ & (P′, R′, E′) ∈ ∆ & P ⊆ P
′ =⇒ R \ P′ ⊆ R

′ & E ⊆ E
′.

We check the safety of terms and sequences using the typing rules of Figure
4. It is easy to verify that if we start from well-formed environments, then we
produce only well-formed environments and well-formed types.

In order to assure safety of reduction rules with respect to this type disci-
pline one can design a type inference system and introduce a notion of Super-
Safe rules for a set of constraints as we did for the previous type discipline in
Subsection 3.1.

4 Case Studies

4.1 Simple Example

Consider the evolution rule:
a1 | x 7→ a | x1.

If a : t ∈ Γ0, then the l.h.s. of this rule has the following principal typing:

⊢ a1 : ∅; (∅, {1 : t}); ∅ ⊢ x : {x : φx}; (∅, ∅); ∅

⊢ a1 | x : {x : φx}; (∅, {1 : t}); ∅

while the r.h.s. has the following principal typing:

⊢ a : ∅; (∅, ∅); ∅ ⊢ x1 : {x : φx}; (∅, {1 : φx}); ∅

⊢ a | x1 : {x : φx}; (∅, {1 : φx}); ∅

The rule is then Ξ-SuperSafe with Ξ = {{1 : t} = {1 : φx}}. A type
mapping satisfying Ξ is then clearly m(φx) = t. We conclude that this rule
can be safely applied for all instantiations which map x to a basic element of
type t.

4.2 Fusion

Membrane fusion is the process by which a vesicle membrane incorporates its
components into the target membrane and releases its cargo into the lumen
of the organelle or, in the case of secretion, into the extracellular medium.

Different steps in membrane fusion are distinguished. First, the vesicle and
the target membrane mutually identify each other. Then, proteins from both
membranes interact with one another to form stable complexes and bring the
two membranes into close apposition, resulting in the docking of the vesicle
to the target membrane. Finally, considerable energy needs to be supplied to
force the membranes to fuse, since the low-energy organizationin which the
hydrophobic tails of the phospholipids are kept away from water while the

12

Aman, Dezani-Ciancaglini, Troina

Fig. 5. SNAREs and vesicle fusion.

hydrophilic head groups are in an aqueous mediummust be disrupted, even if
only briefly, as the vesicle and target membranes distort and then fuse. Each
type of vesicle must only dock with and fuse with the correct target membrane,
otherwise the protein constituents of all the different organelles would become
mixed with each other and with the plasma membrane.

Our understanding of the molecular processes leading to membrane fusion
is only just beginning to take shape, but our current understanding is that two
types of proteins, called SNARES and Rab family GTPases work together to
achieve this. SNARES located on the vesicles (v-SNARES) and on the target
membranes (t-SNARES) interact to form a stable complex that holds the
vesicle very close to the target membrane (Fig. 5). Not all vSNARES can
interact with all tSNARES, so SNARES provide a first level of specificity. So
far, over 50 members of the Rab family have been identified in mammalian
cells, and each seems to be found at one particular site where it regulates one
specific transport event, thus controlling which vesicle fuses with which target.

Consider the initial configuration:

Initial = (a1

vx̃b
2

v)
L
⌋ z̃ | (a1

t b
2

t ỹ)
L
⌋ w̃

where the first component represents the vesicle, while the second component
represents the target membrane, and the indexes only distinguish different
occurrences of the same protein.

This evolves to the configuration:

Final = (atavx̃btbvỹ)
L ⌋ (w̃ | z̃)

by applying the evolution rule:

Initial 7→ Final

If a : ta ∈ Γ0, then the first step of the type inference for Initial is:

⊢ a1

v : ∅; (∅, {1 : ta}); ∅ ⊢ x̃ : {x̃ : (φex, ψex)}; (φex, ψex); ∅

⊢ a1

vx̃ : {x̃ : (φex, ψex)}; (φex ∪ (dom(ψex) ∩ {1}), {1 : t1} ⊎ ψex); Ξ

where Ξ = (φex∩{1} = ∅)∪({1 : t1} ⊲⊳ ψex). The set Ξ prescripts that x̃ should
not contain two links labelled 1 and if it contains a link labelled 1 then this
link has type ta.

The whole set of constraints which assures the safety of the application for

13

Aman, Dezani-Ciancaglini, Troina

this rule requires that:

(i) x̃, z̃, ỹ, and w̃ do not have links labelled 1 or 2;

(ii) the open links offered by z̃ are contained in the open links offered by x̃;

(iii) the open links offered by w̃ are contained in the open links offered by ỹ.

These are the conditions we need to check when the variables x̃, z̃, ỹ, and w̃

are instantiated in order to safely apply this reduction rule. Similar checking
steps can be performed if we consider that the membranes that fuse contain
term variables Z and W instead of sequence variables z̃ and w̃.

4.3 Fusion with Promoters and Inhibitors

Membrane fusion is a key event in a variety of important biological processes,
including exocytosis, endocytosis, synaptic transmission, fertilization, and vi-
ral infection. Several investigators [8] have found that the exogenous addition
of specific lipids can modulate the fusion between biological membranes or lipid
vesicles. In many fusion events, fusion is reversibly inhibited by the exogenous
addition of lysophosphatidylcholine (lysoPC) between apposing membranes.
On the other hand, the exogenous addition of glycerol monoleate (GMO),
oleic acid (OA), or arachidonic acid (AA) has been shown to promote cell-cell
fusion.

Considering that we have a cell, which does not contain objects inside,
that is ready to fusion with another cell. Then to the reduction rule:

(x̃)L ⌋ ǫ | (ỹ)L ⌋ z̃ 7→ (x̃ỹ)L ⌋ z̃

we can add the condition that the in type of the l.h.s.:

(i) the type of promoters is present or required;

(ii) the type of inhibitors is excluded.

5 Conclusions

This paper is a first step toward the application of principal typing to the safety
of system transformations which model biological phenomena. We plan to
investigate type disciplines assuring different properties for CLS and to apply
this approach to other calculi for describing evolution of biological systems, in
particular to P systems.

References

[1] Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin,
H. and Schug, J. (2001) Hybrid modeling and simulation of biomolecular
networks. Proc. of Hybrid Systems: Computation and Control, LNCS 2034,
Springer, 19-32.

14

Aman, Dezani-Ciancaglini, Troina

[2] Barbuti, R., Maggiolo-Schettini, A. and Milazzo, P. (2007) Extending the
calculus of looping sequences to model protein interaction at the domain
level. Proc. of International Symposium on Bioinformatics Research and
Applications (ISBRA’07), LNBI 4463, Springer, 638-649.

[3] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P. and Troina, A. (2006) A
calculus of looping sequences for modelling microbiological systems. Fund.
Inform., 72, 21-35.

[4] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P. and Troina, A. (2006)
Bisimulation congruences in the calculus of looping sequences. Proc. of
International Colloquium on Theoretical Aspects of Computing (ICTAC’06),
LNCS 4281, Springer, 93-107.

[5] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., and Troina, A. (2008)
Bisimulations in calculi modelling membranes. Formal Aspects of Computing,
to appear.

[6] Cardelli, L. (2005) Brane calculi. Interactions of biological membranes. Proc.
of Comput. Methods in Systems Biology (CMSB’04), LNCS 3082, Springer,
257-280.

[7] Danos, V. and Laneve, C. (2004) Formal molecular biology. Theor. Comput.
Sci., 325, 69-110.

[8] McIntosh, T., Kulkarni, K., and Simon, S. (1999) Membrane fusion promoters
and inhibitors have contrasting effects on lipid bilayer structure and
undulations. Biophysical Journal 76, 2090-2098.

[9] Matsuno, H., Doi, A., Nagasaki, M. and Miyano, S. (2000) Hybrid Petri net
representation of gene regulatory network. Prooceedings of Pacific Symposium
on Biocomputing, World Scientific Press, 341-352.

[10] Milazzo, P. (2007) Qualitative and quantitative formal modeling of biological
systems. Ph.D. Thesis, University of Pisa.

[11] Pǎun, G. (2002) Membrane computing. An introduction. Springer, 2002.

[12] Regev, A., Panina, E. M., Silverman, W., Cardelli, L. and Shapiro, E. (2004)
BioAmbients: an abstraction for biological compartments. Theor. Comput.
Sci., 325, 141-167.

[13] Regev, A. and Shapiro, E. (2002) Cells as computation. Nature, 419, 343.

[14] Regev, A. and Shapiro, E. (2004) The π-calculus as an abstraction for
biomolecular systems. Modelling in Molecular Biology, Natural Computing
Series, Springer, 219-266.

[15] Wells, J. (2002). The Essence of Principal Typings. Proc. of
29th International Colloquium on Automata, Languages and Programming
(ICALP’02), LNCS 2380, Springer, 913-925.

15

	Introduction
	Summary

	The Calculus of Looping Sequences
	Type Disciplines
	A Type Discipline for Safe Bindings
	A Type Discipline for Present/Required/Excluded Elements

	Case Studies
	Simple Example
	Fusion
	Fusion with Promoters and Inhibitors

	Conclusions
	References

