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Abstract. Studying arbuscular mycorrhizal fungi and their symbiotic 

endobacteria has potentially strong impacts on the development of new 

biotechnology applications. Comparative genomics is a key technique for 

acquiring information about phylogenetic relationships and metabolic functions 

of such organisms. In this paper, we describe a case-based retrieval tool, which 

supports endobacteria genome sequence search and comparisons. While 

designing the tool, our main goal has been the one of granting for 

interpretability of the output results and understandability of the retrieval 

process. As a matter of fact, our system is supposed to provide support to 

biologists in a flexible and interactive way - and not to work in a black box 

fashion, providing complete (and unexplained) solutions to end users. To this 

end, we have implemented multi-level abstraction mechanisms and proper 

indexing techniques, for flexible query issuing, and interactive and efficient 

query answering. A case study taken from the application domain is used to 

illustrate the approach. 

1   Introduction 

    Arbuscular mycorrhizal fungi (AMFs) are obligate symbionts which, to complete 

their life cycle, must enter in association with the root of land plants. Here, they 

become a crucial component of soil microbial communities, and exert positive 

impacts on plants health and productivity [1,2]. AMFs are thus a significant resource 

for sustainable agriculture; in addition, they could also be exploited as a still unknown 

resource to promote green (agriculture) and white (industrial) biotechnologies.     

AMFs are often in further symbiosis with uncultivable bacteria, living inside the AMF 

itself [3]. The resulting tripartite system (i.e. (i) endobacterium; (ii) AMF; (iii) plant 

roots) is a complex biological object, whose extensive study requires a comparative 

genomics approach, in order to answer fundamental questions concerning the biology, 

ecology and evolutionary history of the system and of its composing elements. As a 

matter of fact, comparative genomics represent a key instrument to discover or 

validate phylogenetic relationships, to give insights on genome evolution, and to infer 

metabolic functions of a given organism, which is particularly useful when 

biochemical and physiological data are not available and/or hard to obtain.  

 

While bacterial endosymbionts in the animal kingdom are excellent models for 

investigating important biological events, such as organelle evolution, genome 

reduction, and transfer of genetic information among host lineages [4], examples of 



endobacteria living in fungi are limited [5]. A key part of the study about the tripartite 

system mentioned above is therefore represented by the analysis of the genomic data 

of the endobacteria themselves. In particular, large-scale analysis and comparison of 

genomes belonging to phylogenetically related free-living bacteria can provide 

information about the events that led to genome down-sizing, and insights about the 

reason of the strict endosymbiotic life style of the bacteria at hand. 

In this paper, we present a genome search and comparison tool, meant to support 

biologists in comparative genomics studies on such endobacteria. The tool relies on 

the retrieval step of the Case-Based Reasoning (CBR) methodology [6]. While 

designing the tool, our main goal has been the one of granting for interpretability of 

the output results and understandability of the retrieval process. As a matter of fact, 

our system is supposed to provide support to biologists in a flexible and interactive 

way - and not to work in a black box fashion, providing complete (and unexplained) 

solutions to end users. In our implementation, retrieval is made flexible by the 

possibility of expressing queries at different levels of abstraction detail, resorting to a 

technique similar to Temporal Abstractions [7,8]. Moreover, end-users are allowed to 

progressively relax or refine their queries, in an interactive way. Finally, retrieval is 

made efficient by the use of multi-dimensional orthogonal index structures, which 

allow for early pruning and focusing. The tool is integrated into a modular 

architecture, composed by a database [9], in which massive genomic data are 

imported and stored, and by genomic comparison (synteny) and visualization tools, 

most of which are adaptations of open source software tools developed within the 

Generic Model Organism Database (GMOD) project [10]. Details of our work are 

provided in the next sections. 

2   Flexible and interactive retrieval of similar genomes 

The genome search and comparison tool we have designed, implements the retrieval 

step of the CBR [6] cycle. Note that purely retrieval systems are very valuable 

decision support tools [11], especially when automated adaptation strategies can be 

hardly identified, as in biology and medicine [12]; in our work we are following 

exactly this research line. 

In our CBR module, the information stored in cases is related to genomes 

expressed as sequences of nucleotides, each one taken from a different organism, and 

properly aligned with the genome of a reference organism (see below for a detailed 

description of case representation). Completing the alignment task is therefore a 

prerequisite for representing cases in our library. In our approach we rely on BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to deal with alignment. BLAST is in fact a 

state-of-the-art local alignment algorithm, specifically designed for bioinformatics 

applications. BLAST can take as an input any type of nucleotide sequence, i.e.  a 

whole chromosome or plasmid, contigs or single genes, and properly aligns it to a 

database of strings belonging to (different) organisms of interest. From a typical 

BLAST output one can extract basic information (% of similarity and length of 

sequence alignment) that can be easily plotted as represented in figure 1, providing a 

piecewise constant function, which graphically represents the alignment itself.    



 
 

Fig. 1. A graphical visualization of sequence alignment (x-axis: nucleotide position of the 

alignment with respect to the reference string; y-axis: % of similarity). As an example, a 

substring with an 82% similarity, corresponding to a medium (M) qualitative value, is 

highlighted. 

 

In our application domain, however, it is useful to convert the quantitative 

similarity values provided by BLAST to a set of qualitative levels (e.g. low, medium, 

high similarity), thus providing a “higher level” view of the information, able to 

abstract from unnecessary details. To perform such a conversion, we propose a 

semantic-based abstraction process, similar to the Temporal Abstractions (TA) 

techniques [7,8]. TA is an Artificial Intelligence methodology which allows to move 

from a point-based to an interval-based representation of a time series, where time 

series points are converted into intervals (episodes), aggregating adjacent points 

sharing a common behavior, persistent over time. In particular, state abstractions [8] 

allow to extract episodes associated with qualitative levels of the variable represented 

by the time series, where the mapping between qualitative abstractions and 

quantitative values has to be parameterized on the basis of domain knowledge. In our 

framework, we adopt this methodology with a main difference: the independent 

variable is the symbol position in the aligned strings, instead of time. The values to be 

converted into qualitative levels are then the percentages of similarity between the 

two strings themselves. An example is provided in figure 1, where e.g. a similarity of 

82% is considered to be medium (M). More specifically, on the basis of domain 

knowledge we define a whole taxonomy of qualitative levels, where low, medium and 

high values can be further specialized (see figure 2). We also allow to abstract the 

information about the “localization” of the aligned substrings along the nucleotide 

sequences at different granularities (see figure 3), visualizing genome information at 

the level of genes, regions, chromosomes or even complete genomes1. This 

granularity change makes sense from a biological point of view: consider e.g. that a 

region may be conserved among relative organisms, while a specific gene within the 

                                                           
1  Since, in our application, the full genome of an organism is typically subdivided into one or 

more chromosomes/plasmids, similarity between two genomes has to be calculated by 

applying an aggregation operation to the similarities at the single chromosome/plasmid level. 

We are currently using the arithmetic mean as an aggregation operator. 



region may not. Thus, a high similarity at the region level might be difficultly 

identified at the level of single genes (see the case study below). Note that the 

taxonomy of granularities is strongly influenced by domain semantics. For instance, 

the number of nucleotides which composes a gene depends on the specific organism, 

and on the specific gene.  

To summarize, in our framework case representation is obtained as follows. First, 

a pair of nucleotide sequences are optimally aligned by BLAST, which provides, for 

each aligned fragment, a percentage of similarity. Abstractions on such quantitative 

data are then calculated, and converted into qualitative ones. Abstractions are 

calculated at the ground level in the symbol taxonomy (and operate also at the ground 

level in the granularity taxonomy, since they work on nucleotides, see figure 3). The 

resulting string of symbols (i.e. (very/moderately) low, medium, high) is finally stored 

in the case library as a case.  
Despite the fact that cases are stored as abstractions at the ground level, they could 

be easily converted at coarser levels in both dimensions (i.e. in the dimension of the 
taxonomy of symbols, and in the one of granularities). Such conversion is actually the 
means by which we support flexible case retrieval. In particular, a researcher can 
express queries as sequences of symbols, and may start with a generic, abstract 
requirement (e.g. look for a high similarity in the whole chromosome). All the cases in 
the case base exactly matching the query will be retrieved. Then, the user may 
progressively refine the query on the basis of the outputs s/he has collected (e.g. look 
for a very high similarity in the first gene), in order to reduce the retrieval set and better 
characterize the results. Refinement may take place in a way which cannot necessarily 
be foreseen a priori, interactively changing the level of abstraction/aggregation on 
demand. 

 

Fig. 2. An example taxonomy of state abstraction symbols; for instance, the high (H) symbol 

specializes into very high (Hv) and moderately high (Hm). 

 

 

Fig. 3. A taxonomy of sequence granularities.  



Obviously, since cases are stored at the ground level in both dimensions, in order 

to identify the cases that match a specific, possibly more abstract query, a function for 

scaling up (up henceforth) two or more symbols expressed at a specific granularity 

level to a single symbol expressed at a coarser one must be provided. Moreover, a 

proper distance function must be defined for retrieval. The taxonomies, as well as the 

up and the distance  functions, have to be detailed on the basis of the semantics of the 

specific application domain. However, we have identified a set of general 

“consistency” constraints, that any meaningful choice must satisfy, in order to avoid 

ambiguous or meaningless situations. For instance, we enforce the fact that distance 

monotonically increases with ordering in the symbol domain - if any (e.g. the distance 

between L (low) and M (medium) is smaller than the distance between L (low) and H 

(high), see figure 2). Moreover, distance “preserves” ordering also in case isa 

relationships between symbols are involved (e.g. the distance between L (low) and M 

(medium)  is smaller than the distance between L (low) and HV (very high)). The 

exhaustive presentation of such constraints is outside the scope of this paper, but can 

be found in [13]. 

In order to increase efficiency, our framework also takes advantage of multi-

dimensional orthogonal index structures, which allow for early pruning and focusing 

in query answering. Indexes are built on the basis of the taxonomies described above. 

The root node of each index is a string of symbols, defined at the highest level in the 

symbol taxonomy (i.e. the children of “Any”, see figure 2) and in the granularity 

taxonomy. A (possibly incomplete) index stems from each root, describing 

refinements along the granularity and/or the symbol dimension. An example multi-

dimensional index, rooted in the H symbol, is represented in figure 4. Note that, in the 

figure, granularity has been chosen as the leading dimension, i.e. the root symbol is 

first specialized in the granularity dimension. From each node of the resulting index, 

the sequence of symbols of the node itself is then orthogonally specialized in the 

secondary (i.e. the symbol) dimension, while keeping granularity fixed. However, the 

opposite choice for instantiating the leading and the secondary dimensions would also 

be possible. Each node in each index structure is itself an index, and can be defined as 

a generalized case, in the sense that it summarizes (i.e. it indexes) a set of cases. This 

means that the same case is typically indexed by different nodes in one index (and in 

the other available indexes). This supports flexible querying as well, since, depending 

on the level at which the query is issued, according to the two taxonomies, one of the 

nodes can be more suited for providing a quick answer. 

Technically speaking, to answer a query, in order to enter the more proper index 

structure, we first progressively generalize the query itself along the secondary 

dimension (i.e. the symbol taxonomy in the example), while keeping the leading 

dimension (i.e. granularity in the example) fixed. Then, we generalize the query in the 

other dimension as well. Following the generalization steps backwards, we can enter 

the index from its root, and descend along it, until we reach the node which fits the 

original query leading dimension level. If an orthogonal index stems from this node, 

we can descend along it, always following the query generalization steps backwards. 

We stop when we reach the same detail level in the secondary dimension as in the 

original query. If the query detail level is not represented in the index, because the 

index is not complete, we stop at the most detailed possible level. We then return all 

the cases indexed by the selected node. 



We will now illustrate query answering by means of a specific case study. We take 

as a reference organism a bacterium belonging to the Burkholderia genus. All bacteria 

belonging to this family share a region, called DCW cluster, which is involved in the 

synthesis of peptidoglycan precursors and cell division. The DCW cluster is 

composed by 14 genes: FtsA, FtsI, FtsL, FtsQ, FtsW, FtsZ, mraW, mraY, mraZ, 

murC, murD, murE, murF, murG. The prominent feature of this cluster is that it is 

conserved with a high (H) similarity in many bacterial genomes over a broad 

taxonomic range. Notwithstanding some bacteria belonging to the studied family 

simply miss one of the 14 genes (specifically the third), while all of the others 

maintain a high similarity at the DCW region level with their relatives. Therefore, it 

makes sense to define the up function as follows: up(HHLHHHHHHHHHHH)=H 

(where the absence of a gene is identified by a low  similarity value in the gene 

position). Suppose that, more precisely, the user expresses the query 

HvHvLvHvHvHvHvHvHvHvHvHvHvHv, looking for the specific bacteria missing the 

third gene, but very similar to the reference one as regards the other genes. Our 

system will first generalize the query in the symbol taxonomy dimension, providing 

the string HHLHHHHHHHHHHH (see figure 4), and then in the granularity 

dimension, providing the query H at the region level. This allows to enter the index in 

figure 4 from its root. Then, following the generalization step backwards, a node 

identical to the query can be found, and the ground cases indexed by it can be 

retrieved. The index search steps are highlighted in the figure. 

Interactive and progressive query relaxation (or refinement) are supported as well 

in our framework. Query relaxation or refinement can be repeated several times, until 

the user is satisfied with the width of the retrieval set. In the Burkholderia example, 

the user may e.g. generalize the initial query as an H at the region level, and retrieve 

also the cases indexed by HHHHHHHHHHHHHH at the gene level (the other 

siblings of HHLHHHHHHHHHHH do not index any real case in this specific 

situation). The cases indexed by HHHHHHHHHHHHHH can thus be listed, 

clarifying that their distance (calculated by any distance function which satisfies the 

constraints illustrated in [13], and quickly described above) from the original query is 

greater than zero. It is worth noting that indexes may be incomplete with respect to 

the taxonomies. Index refinement can be automatically triggered by the memorization 

of new cases in the case base, and by the types of queries which have been issued so 

far. In particular, if queries have often involved e.g. a symbol taxonomy level which 

is not yet represented in the index(es), the corresponding level can be created. A 

proper frequency threshold for counting the queries has to be set to this end. This 

policy allows to augment the indexes discriminating power only when it is needed, 

while keeping the memory occupancy of the index structures as limited as possible. 

Flexibility and interactivity are also supported by a user-friendly graphical 

interface, which has been designed by following software engineering principles, in 

order to enhance usability and user friendliness in the interaction with the system. 

Through the interface, we provide a graphical representation of the indexes 

(conceptually depicted as in figure 4), whose nodes can be exploded or iconified, 

facilitating index navigation (see figure 5). Moreover, the graphical interface can 

support the user in selecting the proper navigation direction, providing him/her with 

quantitative and qualitative information about the cases indexed by sons and siblings 

of the currently visited node (i.e. the number of indexed cases, the sequence of 



abstractions representing the cases and the distance from the sequence of abstractions 

representing the node currently visited by the user). 

The interested reader may find additional technical details about our framework in 

[13]. Very encouraging experimental results have already been obtained by resorting 

to the same framework, in the field of haemodialysis [14].  

 

 

Fig. 4. An example multi-dimensional orthogonal index.  

 

   Fig. 5. A snapshot of index navigation as rendered by the system graphical interface. 

3   Related work 

In 1993, Aaronson [15] suggested that analogical reasoning (which includes CBR) 

is particularly applicable to the biological domain, because biological systems are 

often homologous, and because biologists often design and perform experiments 



based on the similarity between features of the new system to be investigated, and 

already known ones.  

As a matter of fact, since then, some CBR applications in biology and 

bioinformatics have been published. The paper in [16] is an interesting survey on the 

topic. The surveyed papers are mostly related to experimental design in protein 

crystallization and protein structure prediction. However, one contribution [15] also 

makes the hypothesis of using a CBR approach for predicting unknown regulatory 

regions. More recently, a hybrid method (resorting to Bayesian techniques and CBR) 

for feature selection in microarray data analysis has been presented [17] . 

Except for the work in [15], however, we are not aware of CBR works in genomic 

comparison. Moreover, the work in [15] does not support any flexible and interactive 

case retrieval, as we are able to do by means of an abstraction mechanism. 

As stated in section 2, our abstraction mechanisms resembles the one of TA [7,8]. 

In fact, the present work has been developed starting from our previous experience on 

TA-based time series retrieval [13,14], and properly adapting the characteristics of the 

framework described in [13,14] to the biological domain. Actually, such a framework 

was designed in a modular and domain-independent way. The adaptation to the 

biological domain has mainly consisted in resorting to state TA (instead of trend TA), 

which are more suited to deal with the abstraction of similarity levels. The adaptation 

has also required the acquisition of the specific domain knowledge, which has been 

the basis for a proper definition of the taxonomies and of the distance and up 

functions.  

As regards TA, they have been extensively resorted to in the literature, especially 

in the medical field, from diabetes mellitus [18,19], to artificial ventilation of 

intensive care units patients [20] (see also the survey in [21]), but typically with the 

aim to solve a data interpretation task [7], and not as a flexible retrieval support 

facility. The goal of our proposal is to try to fill this gap, by exploiting an abstraction 

mechanism for supporting data interpretation, as well as case exploration and 

retrieval; this idea thus appears to be significantly innovative in the recent literature 

panorama. 

As previously observed, one of our main goals was not to work in a black box 

fashion with respect to end-users: on the other hand, we wished to build an interactive 

system. It is worth noting that, in classical case retrieval systems, interactivity is 

typically not supported: the user is asked to input the entire, precise problem 

description as a query for case retrieval. This means s/he must know the relevance of 

every case feature - which is not always straightforward in practice. A research 

direction meant to overcome this limitation indeed exists in the CBR literature, and is 

known as Conversational CBR (CCBR) (see e.g. [22,23]). In CCBR, the user is 

allowed to input just a brief free text description of the case, to start. The system then 

supports a progressive query refinement through a conversation, in which best 

matching cases, with respect to the (abstract) query expressed so far, are listed, and 

further questions meant to reduce and specialize the retrieval set are asked by the 

system itself. Our framework thus loosely resembles CCBR. However, CCBR is 

characterized by some strong challenges, namely related to case authoring, and dialog 

inferencing. Both aspects are non-trivial, and should be solved by specific modules 

(based e.g. on machine learning [24] or model-based reasoning [25] techniques). Such 

an additional effort is not required in our framework. 



5   Conclusions 

In this paper, we have described the main features of a genome search and 

comparison tool, which implements the retrieval step of the CBR cycle. Such a tool 

provides researchers with flexible retrieval capabilities, in an interactive fashion. 

Flexibility and interactivity are also supported by a user-friendly graphical interface, 

which has been designed by following software engineering principles, in order to 

enhance usability and user friendliness in the interaction with the system. Moreover, 

retrieval performances are optimized by resorting to multi-dimensional orthogonal 

index structures, allowing for a quick query answering.  

In the next months, we will work at the system evaluation phase, by initializing the 

tool case base with a selection of genomes (in particular, from symbiotic 

microorganisms) available in the RefSeq NCBI database. A newly sequenced 

organism, in particular, will be made available. The tool will then support genomic 

comparison studies between the new genome and the ones of relative organisms 

already known to the scientific community, which is one of the key goals of the our 

application. 

Acknowledgements 

The work is supported by the BIOBITS project, a grant of Regione Piemonte, under 

the Converging Technologies Call, which involves the University of Turin, the 

University of Piemonte Orientale, the IPP-CNR and the companies ISAGRO Ricerca 

s.r.l., GEOL Sas, Etica s.r.l. 

References 

1. J. Marx. The roots of plant-microbe collaborations. Science, 304:234236, 2004. 

2. P. Bonfante, A. Genre, . Mechanisms underlying beneficial plant-fungus interactions in 

mycorrhizal symbiosis,  Nature Communications., 1:48, 2010.  

3. I.A. Anca, E. Lumini, S. Ghignone, A. Salvioli, V. Bianciotto, P. Bonfante, The ftsZ gene 

of the endocellular bacterium 'Candidatus Glomeribacter gigasporarum' is preferentially 

expressed during the symbiotic phases of its host mycorrhizal fungus, Molecular plant-

microbe interactions : MPMI;22(3):302-10, 2009 

4. N.A. Moran, A.J. McCutcheon, and P. Nakabachi. Genomics and evolution of heritable 

bacterial symbionts. Annu. Rev. Genet., 42:165190, 2008. 

5. E. Lumini, S. Ghignone, V. Bianciotto, and P. Bonfante. Endobacteria or bacterial 

endosymbionts? to be or not to be. New Phytol, 170:205208, 2006. 

6. A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodological 

variations and systems approaches. AI Communications, 7:3959, 1994. 

7. Y. Shahar. A framework for knowledge-based temporal abstractions. Artificial Intelligence, 

90:79133, 1997. 

8. R. Bellazzi, C. Larizza, and A. Riva. Temporal abstractions for interpreting diabetic 

patients monitoring data. Intelligent Data Analysis, 2:97122, 1998. 



9. C.J. Mungall, D.B. Emmert, The FlyBase Consortium. A chado case study: an ontology-

based modular schema for representing genome-associated biological information. 

Bioinformatics, 23(13):i33746, July 2007. 

10. B. Osborne and GMOD Community. GMOD, 2000. 

11. I. Watson. Applying Case-Based Reasoning: techniques for enterprise systems. Morgan-

Kaufmann, 1997.  

12. S. Montani. Exploring new roles for case-based reasoning in heterogeneous AI systems for 

medical decision support. Applied Intelligence, 28:275285, 2008. 

13. S. Montani, A. Bottrighi, G. Leonardi, L. Portinale, and P. Terenziani. Multi-level 

abstractions and multi-dimensional retrieval of cases with time series features. In L. 

McGinty and D. Wilson, editors, Proc. International Conference on Case-Based Reasoning 

(ICCBR) 2009, Lecture Notes in Artificial Intelligence 5650, pages 225 239. Springer-

Verlag, Berlin, 2009. 

14. A. Bottrighi, G. Leonardi, S. Montani, L. Portinale, P. Terenziani, Intelligent data 

interpretation and case base exploration through Temporal Abstractions, Proc. International 

Conference on Case-Based Reasoning (ICCBR) 2010, LNCS 6176, I. Bichindaritz, S. 

Montani eds., Springer, Berlin, pp. 36-50 

15. J.S. Aaronson, H. Juergen, G.C. Overton, Knowledge discovery in GENBANK, Proc. 

International Conference on Intelligent Systems for molecular biology, L. Hunter, D. 

Searls, U. Shavlik eds., AAAI Press, pp. 3-11 

16. I. Jurisica, J. Glasgow, “Applications of Case-Based Reasoning in molecular biology”, AI 

Magazine, vol. 25(1), pp. 85-95, 2004. 

17. I. Bichindaritz, A. Annest, Case based reasoning with Bayesian model averaging: an 

improved method for survival analysis on microarray data, Proc. International Conference 

on Case-Based Reasoning (ICCBR) 2010, LNCS 6176, I. Bichindaritz, S. Montani eds., 

Springer, Berlin, pp. 346-359 

18. Y.  Shahar  and  M.  Musen,  “Knowledge-based  temporal  abstraction in clinical 

domains,” Artificial Intelligence in Medicine, vol. 8, pp. 267–298, 1996. 

19. R. Bellazzi, C. Larizza, P. Magni, S. Montani, and M. Stefanelli, “Intelligent analysis of 

clinical time series: an application in the diabetes mellitus domain,” Artificial Intelligence 

in Medicine, vol. 20, pp. 37–57, 2000. 

20. S. Miksch, W. Horn, C. Popow, and F. Paky, “Utilizing temporal data abstractions for data 

validation and therapy planning for artificially ventilated newborn infants,” Artificial 

Intelligence in Medicine, vol. 8, pp. 543–576, 1996. 

21. P. Terenziani, E. German, and Y. Shahar, “The temporal aspects of clinical guidelines,” in 

Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, A. T. 

Teije, S. Miksch, and P. Lucas, Eds., 2008. 

22. D. Aha and H. Munoz-Avila. Introduction: interactive case-based reasoning. Applied 

Intelligence, 14:78, 2001. 

23. M. Manago, K.-D. Althoff, E. Auriol, R. Traphoner, S. Wess,N. Conruyt, and F. Maurer, 

“Induction and reasoning from cases,” in Proc. European Workshop on CBR.    Springer, 

1993, pp. 313–318. 

24. D. Aha and L. Breslow, “Refining conversational libraries,” in Proc International 

Conference on Case Based Reasoning.  Springer, 1997, pp. 267–278. 

25. D.  Aha,  T.  Maney,  and  L.  Breslow,  “Supporting  dialogue inferencing in 

conversational case-based reasoning,” in Proc European Workshop on Case Based 

Reasoning.    Springer, 1998, pp. 262–273 


